
The pdcaen package

Maurizio Loreti

Istituto Nazionale di Fisica Nucleare

Sezione di Padova

December 2004

1 Introduction

CAEN1 builds and sells two power supplies specifically designed for research in High
Energy Physics, and that may be remotely controlled by software through a TCP/IP
socket connection: the SY1527 and the SY2527. CAEN itself supplies a (C language)
library2 providing software developers with a standard interface for the control of these
power supply systems; the current version3 is 2.11.

2 The pdcaen C++ wrapper

In Padova this library has been encapsulated in a C++ interface, the “pdcaen” package,
here described; that happened because our power supplies had to be driven by a C++

main program, the so-called long term test by Wim Beaumont et al., that tests our
silicon detectors. The interface itself is declared and defined in the files sy2527.hh and
sy2527.cxx; in addition, other files implement small programs that interacts in various
ways with the SY2527 power supply through the pdcaen interface.

A Makefile is supplied, that drives the C++ compiler in order to build all these
programs. All the software conforms with the 1998 C++ standard, ISO/IEC 14882-1998;
and has been tested with various versions of both the GNU g++ compiler (version 3),
and of the Kuck & Associates, Inc. (KAI) KCC compiler.

The preprocessor symbols NDEBUG and CAENDEBUG are tested inside sy2527.hh: the
first one, if defined, suppresses the explicative error messages sent to the standard error
stream if some calls to the pdcaen routines controlling the target power supply fail; the
second one, if defined, sends to the standard output stream a message summarizing the
communication status for every call to these routines.

The pdcaen package assumes that several power supplies may be addressed: but all
of them with the same user name4 and password; user name and password are static
members of the class caenPST, declared inside sy2527.hh, and must be defined somewhere
by the user.

2.1 Utility procedures

The header file sy2527.hh defines, in the namespace sy2527, two general procedures:

1Costruzioni Apparecchiature Elettroniche Nucleari SPA, Viareggio (Italy).
2Freely available for download at the URL http://www.caen.it/computing/scdown.php .
3As of December 2004.
4The CAEN defines three user names, “admin”, “user” and “guest”, with decreasing privileges.

1



void version(std::ostream & o = std::cout)

Writes on the output stream o version informations about the CAEN libraries and
the pcdaen package; since these version informations cannot be easily obtained from
the shared libraries themselves, they are internally defined (as static const char

[], and inside the namespace sy2527), in the file sy2527.cxx.

std::string timeStamp(void)

Used for debug printouts; returns a string containing month, day and current time.

2.2 Classes

The header file sy2527.hh defines two classes:

caenPST

Abstraction of a CAEN power supply controlled over TCP/IP. The constructor
takes two const std::string & arguments: a symbolic name used by the CAEN
library to identify a particular power supply; and a TCP/IP address. If the costruc-
tor can establish a socket connection with the power supply at the given network
address, then queries for the available high-voltage boards; if it cannot, an ex-
ception of type std::runtime_error is thrown. The (virtual) destructor closes the
socket connection, and deallocates the resources allocated by the constructor.

N.B.: copy constructor and assignment operator are declared private and never
defined, in order to prevent their use.

caenBD

Abstraction of a CAEN high-voltage board. It is used by caenPST internally, and
should not be addressed by the user directly (but only through the methods of the
class caenPST).

2.3 Board-related methods

unsigned int getNBoards(void)

Returns the number N of high-voltage boards that the power supply can host (and
that will be numbered from 0 to N − 1).

double getTemp(unsigned short b)

Returns the temperature (in degrees centigrades) of the board b.

unsigned int getBdStatus(unsigned short b)

Returns the status of the (existent) board b (see the high-voltage board manual
for the meaning of every bit).

caenBD * testB(unsigned int b)

Returns NULL if there is no high-voltage board in the slot b.

bool testBC(unsigned int b, unsigned short c)

Returns true if c is a valid channel number for the (existent) high-voltage board
b.

2.4 Channel-related methods: accessors

double getV(unsigned int b, unsigned short c)

Returns the actual voltage of the channel c in the (existent) board b.

double getI(unsigned int b, unsigned short c)

Returns the actual current of the high-voltage channel c in the board b.

2



double getVx(unsigned int b, unsigned short c)

x may be 0 or 1. Returns the value of V0 or V1 for the channel c in the board b.

double getIx(unsigned int b, unsigned short c)

x may be 0 or 1. Returns the value of I0 or I1 for the channel c in the board b.

double getTrip(unsigned int b, unsigned short c)

Returns the trip time (in seconds) for the channel c in the board b; see the high-
voltage board manual for more.

double getRup(unsigned int b, unsigned short c)

Returns the ramp-up voltage gradient (in V/s) for the channel c in the board b.

double getRdn(unsigned int b, unsigned short c)

Returns the ramp-down voltage gradient (in V/s) for the channel c in the board
b.

double getSVMax(unsigned int b, unsigned short c)

Returns the maximum allowed high-voltage for the channel c in the board b.

unsigned int getChStatus(unsigned int b, unsigned short c)

Returns the actual status of the high-voltage channel c in the board b (see the
high-voltage board manual for the meaning of every bit).

2.5 Channel-related methods: setters

All these methods return a bool value: true if the call succeeded, false otherwise.

bool setVx(unsigned int b, unsigned short c, float val)

x may be 0 or 1. Sets the value of V0 or V1 for the channel c in the board b.

bool setIx(unsigned int b, unsigned short c, float val)

x may be 0 or 1. Sets the value of I0 or I1 for the channel c in the board b.

bool setTrip(unsigned int b, unsigned short c, float val)

Sets the value of the trip time (in seconds) for the channel c in the board b.

bool setRup(unsigned int b, unsigned short c, float val)

Sets the ramp-up voltage gradient (in V/s) for the channel c in the board b.

bool setRdn(unsigned int b, unsigned short c, float val)

Sets the value of the ramp-down voltage gradient (in V/s) for the channel c in the
board b.

bool setSVMax(unsigned int b, unsigned short c, float val)

Sets the maximum allowed high-voltage for the channel c in the board b.

bool setOn(unsigned int b, unsigned short c)

Sets ON the channel c in the board b.

bool setOff(unsigned int b, unsigned short c)

Sets OFF the channel c in the board b.

3 The pdcaen utility programs

As a general note, all these programs are linked against the CAEN shared libraries; that
should be copied somewhere in LD_LIBRARY_PATH, and setup with ldconfig5. For a quick
run, you may use the call

./doit <prog>

that resolves the library symbols of the program <prog> against the local copies.

5Under Linux; for other operating systems your mileage may vary.

3



3.1 tester

tester.cxx is a program that:

1. asks to the user the symbolic name and the network address to be used to construct
an instance of the caenPST class;

2. asks for a board and a channel number;

3. opens a socket connection with the power supply, sets ON the given channel of the
given board, and then drives its voltage to 50 V monitoring the ramp-up every
second;

4. after 5 seconds, drives the channel voltage down to 0 V, monitoring the ramp-down
every second; then switches it OFF, and exits.

In order to use tester:

1. On the power supply :

• The “Power” key must be on ON, LOCAL;

• The “local” switch must be on LOCAL ENABLE;

• The “interlock” switch must be OFF.

2. On the high-voltage board :

• A 50 Ω dummy load must be on HV-ENABLE;

• A suitable load (say, 100 MΩ) must be on the selected output channel.

This setup (apart from the dummy load on the channel output) is also required for the
other test programs.

3.2 monitor

monitor.cxx asks for a symbolic name and a network address; then for a board and
a channel number. Until CTRL-C is pressed, monitor will print on the standard output
stream the status of the given channel every 5 seconds.

3.3 caenlogger

caenlogger is a variant of the previous monitoring program: symbolic name, network
address, board and channel number are not asked interactively — but defined internally.
caenlogger requires two command-line options, a file name (may be /dev/tty) and a
sleep time in seconds: until CTRL-C is pressed, at constant time intervals the status of
the high-voltage channel is printed in fixed format on the given file.

In Padova, a php program reads that output file and builds an active web page where
the channel voltage and/or current is shown as a function of the time.

3.4 caenoff

This program is called by our UPS in case of power off; it drives all the connected
channels of the power supply to 0 V, then switches them OFF.

4



3.5 exerciser

This program asks for a command from the user. Known commands are Read, Set, Exit

and Quit : the last two commands terminate the program, and the first one reads and
prints the status of an high-voltage channel.

With the second command (Set), the program asks for what to set: possible answers
are V0, I0, V1, I1, Trip, Rup, Rdn, Svmax, On, and Off ; if the answer was not On or
Off, a numeric value is then required.

For the alphanumeric input, the case is not significant; and only the minimum num-
ber of characters needed to identify the command is required. Identifiers and numeric
values may be given all on a single line, or in several ones: e.g. SET <CR> v0 <CR> 50

<CR> and s v0 50 <CR> are equivalent.

5


