The

Memoir
Class

The Memoir Class for
 Configurable Typesetting
 User Guide
 Peter Wilson

(C) 2001, 2002, 2003, 2004 Peter R. Wilson

All rights reserved
The Herries Press, Normandy Park, WA.
Printed in the World
The paper used in this publication may meet the minimum requirements of the American National Standard for Information Sciences - Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984.

$$
10090807060504030201 \quad 1514131211109
$$

First edition:	3 June 2001
Second impression, with corrections:	2 July 2001
Second edition:	14 July 2001
Second impression, with corrections:	3 August 2001
Third impression, with minor additions:	31 August 2001
Third edition:	17 November 2001
Fourth edition:	16 March 2002
Fifth edition:	10 August 2002
Sixth edition:	31 January 2004

memoir, n. a written record set down as material for a history or biography: a biographical sketch: a record of some study investigated by the writer: (in pl.) the transactions of a society. [Fr. mémoire - L. memoria, memory - memor, mindful.]

Chambers Twentieth Century Dictionary, New Edition, 1972.
memoir, n. [Fr. mémoire, masc., a memorandum, memoir, fem., memory $<\mathrm{L}$. memoria, MEMORY] 1. a biography or biographical notice, usually written by a relative or personal friend of the subject 2. [pl.] an autobiography, usually a full or highly personal account 3. [pl.] a report or record of important events based on the writer's personal observation, special knowledge, etc. 4. a report or record of a scholarly investigation, scientific study, etc. 5. [pl.] the record of the proceedings of a learned society

Webster's New World Dictionary, Second College Edition.

Contents

Contents i
List of Figures ii
List of Tables iii
Preface v
Introduction to the first edition vii
Type conventions viii
Caveats viii
Introduction to the second edition xi
Introduction to the third edition xiii
Introduction to the fourth edition xv
Introduction to the fifth edition xvii
Introduction to the sixth edition xix
Terminology xxi
Units of measurement xxii
I Art and Theory 1
1 The Parts of a Book 3
1.1 Introduction 3
1.2 Front matter 3
Copyright page 5
1.3 Main matter 5
1.4 Back matter 6
1.5 Signatures and casting off 7
2 The page 9
2.1 The shape of a book 9
The golden section and Fibonacci series 12
2.2 The spread 14
A geometric construction 23
2.3 The typeblock 23
Page color 26
Legibility 26
Widows and orphans 29
Paragraphs and versals 29
Footnotes 31
2.4 Folios 31
2.5 Headers and footers 31
3 Picky points 33
3.1 Introduction 33
3.2 Word and line spacing 33
3.3 Abbreviations and acronyms 33
3.4 Dashes and ellipses 35
3.5 Punctuation 35
Quotation marks 35
Footnote marks 37
Font changes 37
3.6 Narrow measures 38
3.7 Emphasis 38
3.8 Captions and legends 39
3.9 Tables 39
4 Electronic books 41
4.1 Introduction 41
4.2 Observations 41
II Practice 43
5 Starting off 45
5.1 Stock paper size options 45
5.2 Type size options 46
5.3 Printing options. 46
5.4 Other options 47
5.5 Remarks 47
6 Laying out the page 49
6.1 Introduction 49
6.2 Stock material 49
6.3 The page 50
6.4 The typeblock 54
6.5 Headers, footers and marginal notes 59
6.6 Putting it together 60
Example 64
The page layout of this manual 64
7 Titles and abstracts 67
7.1 Introduction 67
$7.2 \quad$ Titles 67
Styling the titling 67
Styling the thanks 71
7.3 Abstracts 73
8 Document divisions 77
8.1 Introduction 77
8.2 Book divisions. 77
8.3 Sectional divisions 78
8.4 Numbering 82
8.5 Part headings 82
8.6 Chapter headings 83
Defining a chapter style 86
8.7 Lower level headings 88
8.8 Heading styles for this chapter. 91
8.9 Footnotes and headers 92
8.10 Pagination and folios 92
9 Paragraphs and lists 95
9.1 Introduction 95
9.2 Paragraphs 95
Hanging paragraphs 96
9.3 Flush and ragged 97
9.4 Quotations 97
9.5 Changing the textwidth 98
9.6 Lists 100
10 Tops and tails 105
10.1 Introduction 105
10.2 LaTeX's ToC methods 105
10.3 The class ToC methods 109
Changing the titles 109
Typesetting the entries 111
10.4 New list of... and entries 116
Example - plates 119
10.5 Extras 120
10.6 Tails 122
Bibliography 122
Index. 124
11 Captions and floats 129
11.1 Introduction 129
11.2 Captions 129
Changing the caption style 129
Continuation captions and legends 132
Bilingual captions 136
Subcaptions 138
How LaTeX makes captions 142
Captions with footnotes 145
11.3 Floats 146
New float environments 146
New subfloats 147
Multiple floats. 148
Where LaTeX puts floats 149
12 Rows and columns 155
12.1 Introduction 155
12.2 General 155
12.3 The preamble 155
D column specifiers 157
Defining new column specifiers 159
Notes 160
12.4 The array environment 160
12.5 Tables 162
Fear's rules 163
Tabular environments 165
12.6 Free tabulars 169
Continuous tabulars 169
Automatic tabulars 170
12.7 Spacing 171
Special variations of \hline 171
Handling of rules 172
13 Margin and foot notes 173
13.1 Footnotes 173
13.2 Verbatim footnotes 179
13.3 Sidebars 179
13.4 Side notes 180
14 Signposts and decoration 183
14.1 Introduction 183
14.2 Page styles. 183
14.3 Making headers and footers 185
Example pagestyles 186
Special headers 187
14.4 Epigraphs 189
The epigraph command 189
The epigraphs environment 190
General 190
Epigraphs before chapter headings 192
Epigraphs on part pages 194
15 Typesetting verse 195
15.1 Introduction 195
15.2 Classy verse 197
Examples 201
A Limerick 201
Loves Lost 202
Fleas 202
In the Beginning 203
Mathematics 203
The Young Lady of Ryde 204
Clementine 205
Mouse's Tale 206
16 Verbatims, boxes, and files 207
16.1 Introduction 207
16.2 Verbatims 207
16.3 Framed boxes 209
16.4 Files 211
17 Miscellaneous 215In which we talk of many things, but not ships or shoes or sealing wax, norcabbages and kings.
17.1 Introduction 215
17.2 Draft documents 215
17.3 Change marks 215
17.4 Trim marks 216
17.5 Sheet numbering 217
17.6 Page breaks before lists 218
17.7 Changing counters 218
17.8 New new and provide commands 219
17.9 Changing macros 220
17.10 String arguments 221
17.11 Odd/even page checking 221
17.12 Moving to another page 222
17.13 Number formatting 223
17.14 An array data structure 226
17.15 pdfLaTeX 227
17.16 Leading 228
17.17 Minor space adjustment 228
17.18 Cross references 229
17.19 Words and phrases 231
17.20 Symbols 232
18 An example design 233
18.1 Introduction 233
18.2 Design requirements 233
18.3 Specifying the page and typeblock 234
18.4 Specifying the sectional titling styles 235
18.5 Specifying the pagestyle 237
18.6 Captions and the ToC 239
18.7 Preamble or package? 239
A Packages and macros 243
A. 1 Introduction 243
A. 2 Packages 243
A. 3 Macros 244
Bibliography 247
Index 254

List of Figures

2.1 Some page proportions 11
2.2 Two spreads: Canada, 1992 and England, 1970 16
2.3 Two spreads: USA, 1909 and England, 1964. 16
2.4 Two spreads: France, 1559 and Canada, 1995 17
2.5 Two spreads: USA, 1949 and 1990 17
2.6 Two spreads: England, 1908 and USA, 1993 18
2.7 Two spreads: USA, 1931 and England, 1968 18
2.8 Two spreads: USA, 1994 and England, 1988 19
2.9 Two spreads: Italy, 1523 and 1499 19
2.10 Two spreads: France/Portugal, 1530 and Gutenberg, C15th 20
2.11 Two spreads: Persia, 1525 and USA, 1975 20
2.12 Two spreads: USA, 1952 and England, 1087 21
2.13 Two spreads for ISO page sizes 21
2.14 Two spreads: England, 1973 and LaTeX 10pt book style 22
2.15 Two spreads: USA, 1967 and England, 1982 22
2.16 Two spreads: England, 1972 and Switzerland, 1980 22
2.17 Two spreads: England, 1969 and USA 1989 23
2.18 The construction of the Gutenberg page design 24
3.1 Interword spacings 34
3.2 Interline spacings 34
3.3 Quotation marks: top English, bottom American 36
6.1 LaTeX page layout parameters for a recto page 51
6.2 The main memoir class page layout parameters for a recto page 52
6.3 The memoir class page layout parameters for a verso page 61
6.4 The recto page layout for this manual 65
8.1 Displayed sectional headings 88
8.2 Runin sectional headings. 89
9.1 Paragraphing parameters 95
9.2 The layout parameters for general lists 102
10.1 Layout of a ToC (LoF, LoT) entry 106
11.1 Long \bitwonumcaption 137
11.1 Lang \bitwonumcaption 137
11.2 Long English \bionenumcaption 137
Lang Deutsch \bionenumcaption 137
11.3 Short English \bicaption 138
11.4 Figure with two subfigures 141
(a) Subfigure 1 141
(b) Subfigure 2 141
11.5 A picture is worth a thousand words 144
11.6 A different kind of figure caption 144
11.7 Float with two illustrations 148
11.8 Illustration 3 149
11.9 Illustration 4 149
11.10 Float and text page parameters 150
11.11 Float parameters 151
13.1 Footnote layout parameters for the standard classes 174

List of Tables

1 Printers units xxii
1.1 Front matter 4
1.2 Common signatures 7
2.1 Some page designs 15
2.2 Average characters per line 25
6.1 Length of CMR lowercase alphabets 54
6.2 Arguments and results for \setlrmargins 56
6.3 Arguments and results for \setlrmarginsandblock 57
6.4 Arguments and results for \setulmargins 58
6.5 Arguments and results for \setulmarginsandblock 58
6.6 Arguments and results for \setheaderspaces 60
6.7 The class and LaTeX page layout parameters 63
8.1 Division levels 82
8.2 Default fonts for sectional headings 91
10.1 Indents and Numwidths 107
11.1 Redesigned table caption style 131
11.2 A multi-part table 133
11.3 Another table 133
Legendary table (toc 1) 134
Legendary table (toc 2) 134
11.4 Float placement parameters 152
12.1 The array and tabular preamble options. 156
12.2 Two views of one table 163
12.3 Example automatic row ordered table 170
12.4 Changing the width of a row ordered table 170
12.5 Changing the width of a column ordered table 171

Preface

From personal experience and also from lurking on the comp.text.tex newsgroup the major problems with using LaTeX are related to document design. Some years ago most questions on ctt were answered by someone providing a piece of code that solved a particular problem, and again and again. More recently these questions are answered along the lines of 'Use the - package', and again and again.

I have used many of the more common of these packages but my filing system is not always well ordered and I tend to mislay the various user manuals, even for the packages I have written. The memoir class is an attempt to integrate some of the more design-related packages with the LaTeX book class. I chose the book class as the report class is virtually identical to book, except that book does not have an abstract environment while report does; however it is easy to fake an abstract if it is needed. With a little bit of tweaking, book class documents can be made to look just like article class documents, and the memoir class is designed with tweaking very much in mind.

The memoir class effectively incorporates the facilties that are usually accessed by using external packages. In most cases the class code is new code reimplementing package functionalities. The exceptions tend to be where I have cut and pasted code from some of my packages. I could not have written the memoir class without the excellent work presented by the implementors of LaTeX and its many packages.

Apart from packages that I happen to have written I have gained many ideas from the other packages listed in the Bibliography. One way or another their authors have all contributed, albeit unknowingly. The participants in the comp.text.tex newsgroup have also provided valuable input, partly by questioning how to do something in LaTeX, and partly by providing answers. It is a friendly and educational forum.

Peter Wilson
Seattle, WA
June 2001

Introduction to the first edition

This is not a guide to the general use of LaTeX but rather concentrates on where the memoir class differs from the standard LaTeX book and report classes. There are other sources that deal with LaTeX in general, some of which are listed in the Bibliography. Lamport Lam94] is of course the original user manual for LaTeX, while the Companion series, for example GMS94, go into further details and auxiliary programs. The Comprehensive TeX Archive Network (CTAN) is a valuable source of free information and the LaTeX system itself. For general questions see the FAQ $\overline{F A Q}$ which also has pointers to information sources. Among these are The Not So Short Introduction to LaTeX2e Oet, Keith Reckdahl's Using imported graphics in LaTeX2e Rec97] and Piet van Oostrum's Page layout in LaTeX Oos96. The question of how to use different fonts with LaTeX is left strictly alone; Alan Hoenig's book Hoe98 is the best guide to this that I know of.

The first part of the manual discusses briefly some aspects of book design and typography, independently of the means of typesetting. Among the several books on the subject listed in the Bibliography I prefer Bringhurst's The Elements of Typographic Style [Bri92]. I have used the LaTeX book design, which is the default memoir class style, in typesetting Part I.

The second part then goes into some detail on how the memoir class can be used to implement a particular design.

With two exceptions, the memoir class has all the capabilities of the standard LaTeX book class. These exceptions are:

- The old LaTeX v2.09 font commands - \rm (roman), \tt (typewriter), \sf (sans), \bf (bold), \sl (slanted), \it (italic), and \sc (SmALL CAPS) - are not supported and will give error messages if used.

The \em (emphasis) command is supported but gives a warning message if used.

- There are no commands for making titles. This is because title pages are usually designed individually for each book. The titling package Wil01g can be used if you want the titling commands. The package provides extended titling facilities when compared to those in the standard LaTeX classes.

I hope that, apart from these, the class supports everything that the book class provides.
The major extra functions provided by the class include:

- Font sizes for the main text of $9,10,11,12$ and 14 pt .
- A reasonably intuitive means of setting the page, text and margin sizes.
- Page trimming marks.
- If really required, typesetting as though in the olden typewriter days (double spaced, raggedright, no hyphenation, typewriter font).
- Configurable sectional headings, with several predefined styles for chapter headings and simple methods for defining new ones.
- 'Anonymous' section breaks (e.g., a blank or decorated line or two).
- Configurable page headers and footers, with several predefined styles and simple methods for defining new ones.
- Configurable captions, with several predefined captioning styles and methods for defining new ones.
- Ability to define new 'List of...' and new floats with their accompanying captions and 'List of...'.
- Control over whether the 'List of...', bibliography, index, etc., appear in the Table of Contents.
- Support for epigraphs.

Also, along the way you will find other more minor but still useful things.
As Part II progresses I demonstrate some of the changes that the memoir class lets you easily make to the normal LaTeX page and titling style.

Type conventions

The following conventions are used in the manual:

- The names of LaTeX classes and packages are typeset in this font.
- Class options are typeset in this font.
- The names of chapterstyles and pagestyles are typeset in this font.
- LaTeX code is typeset in this font.

Caveats

At the moment both this manual and the class code are in a beta state. That is, they hopefully serve the purposes they are intended for, but it is probable that there are errors, poor explanations and missing elements. So, be warned that I'm sure that there will be further releases and these may not be entirely compatible with the current release.

That said, I will be grateful for any constructive comments that anyone ${ }^{1}$ may have, especially regarding errors, mispeaking, and desireable enhancements. I can be reached either by posting to comp.text.tex or more directly at peter.r.wilson@boeing.com.

[^0]TeX was designed principally for typesetting documents containing a lot of mathematics. In such works the mathematics breaks up the flow of the text on the page, and the vertical space required for displayed mathematics is arbitrary. Most non-technical books are typeset on a fixed grid as they do not have arbitrary insertions into the text.

TeX is designed to handle arbitrary sized inserts in an elegant manner, and does this by allowing vertical spaces to stretch and shrink a little so that the actual height of the typeblock is constant. Therefore LaTeX, being built on top of TeX, does not typeset on a fixed grid, and it would be a very major task to try and make it do so; this has been tried but as far as I know nobody has been successful.

The manual includes many unbreakable names of LaTeX commands, some of which stick out into the margin. The way of getting rid of these is to rewrite the text so that they don't come at the end of a typeset line. This is tedious and I haven't done it because I expect the manual to be revised and that would throw off any hand tweaking done now.

Introduction to the second edition

Since the first edition of the manual was published the memoir class has undergone some changes and extensions. The changes, to remove some unfortunate errors, are upwards compatible. The extensions, by their nature, are not upward compatible.

The main extensions and changes include:

- A subfigure option to counteract an unfortunate interplay ${ }^{2}$ if the subfigure package is used with the class.
- An article option so that article class typesetting may be simulated.
- Incorporation of the essential code from the titling package Wil01g (to support the article option).
- Incorporation of the essential code from the abstract package Wil01a (to support the article option).

The description of how to modify the ToC, LoF and LoT headings in the first edition was completely wrong, as was the corresponding description of the \newlistof macro. No noticeable changes have been made to the class code but the descriptions now reflect reality. I must have been a few bricks short of a full load when I wrote the original.

There are other more minor changes and extensions ${ }^{3}$ which you may find if you recall the first edition.

There was no mention of typesetting verse in the first edition, although the class does provide the normal LaTeX verse environment. A poem is usually individually typeset as the appearance often has an effect on the emotional response when reading it. The verse package Wil01k] may be useful when typesetting poetry.

[^1]
Introduction to the third edition

Since the second edition of the manual was published the memoir class has been upgraded from beta code to a production release. Extensions have been made to both the class and this manual.

The main extensions and changes include:

- An openleft option to enable chapters to start on verso pages.
- Incorporation of the essential code from the verse package Wil01k for more flexibility when typesetting poetry.
- Replacement of the macro called \makepshook by \makepsmarks. Note that this is a non-upward compatible change.
- The first part of the manual has been reorganised and extended, principally by providing more typesetting examples.
- As usual, minor glitches have been removed from both the code and the manual; each revision, of course, eliminates the gap between advertisement and reality.

There are other more minor changes and extensions ${ }^{4}$ which you may find if you recall the second edition.

[^2]
Introduction to the fourth edition

Since the third edition of the manual was published the memoir class has been upgraded from version 1.0 to version 1.1. Modifications have been made to both the class and this manual.

The main extensions and changes include:

- The subfigure option is no longer required.
- Subfloats have been added to the class. Steve Cochran kindly gave permission for me to use some of his subfigure package code for this.
- Some packages still use the old, deprecated LaTeX version 2.09 font commands. I have reluctantly introduced an option to enable the old, deprecated font commands to be used.
- The class now works harmoniously with the natbib package [Dal99.
- As usual, minor glitches have been removed from both the code and the manual; each revision hopefully eliminates the gap between advertisement and reality.

There are other more minor changes and extensions ${ }^{5}$ which you may find if you have used earlier editions.

[^3]
Introduction to the fifth edition

Since the fourth edition of the manual was published the memoir class has been upgraded from version 1.1 to version 1.2. Modifications have been made to both the class and this manual.

The main extensions and changes include:

- The size options have been extended ${ }^{6}$ to include a 17 pt option.
- A few font sizes corresponding to the font size commands (e.g., \Large) have been changed to give regular steps between sizes.
- Boxes that can break over pages and/or contain verbatim text.
- Several ways of dealing with verbatim text, including footnotes that can contain verbatim text.
- Some control over the typesetting of footnotes. Unfortunately this necessitated some changes in the methods for styling thanks notes.
- Comment environments.
- Convenient methods for file input and output.
- Additional \provide... commands.
- The description environment has been modified to match the appearance of the standard environment. The original memoir form is still available as the blockdescription environment.
- A new optional argument has been added to the \chapter and \chapter* commands for setting header texts.

As usual, minor glitches have been removed from both the code and the manual. Hopefully, new ones have not been introduced.

[^4]
Introduction to the sixth edition

Since the fifth edition of the manual was published the memoir class has been upgraded from version 1.2 to version 1.6. Many new functions have been added to the class and this manual has been updated to reflect all the additions.

The main extensions and changes include:

- Major extensions for typesetting arrays and tabulars, including continuous tabulars and automatic tabulation.
- Major extensions to footnote styles and the ability to have multiple series of footnotes.
- Major extensions for indexing, including one column and multiple indexes.
- Major extensions to crop marks.
- \tableof contents and friends can be used multiple times.
- Section titles (as well as numbers) can be referenced.
- Sheet numbers and access to the numbers of the last sheet and last page.
- Various methods for formatting numbers.
- Better cooperation with the chapterbib and natbib packages.

There are many more minor additions. As usual, glitches have been removed from both the code and the manual. Hopefully, new ones have not been introduced.

Many people have contributed to the memoir class and this manual in the forms of code, solutions to problems, suggestions for new functions, bringing my attention to errors and infelicities in the code and manual, and last but not least in simply being encouraging. I am very grateful to the following for all they have done, whether they knew it or not: Paul Abrahams, William Adams, Donald Arseneau, Jens Berger, Karl Berry, Javier Bezos, Sven Bovin, Alan Budden, Ignasi Furió Caldenty, Ezequiel Martín Cámara, David Carlisle, Steven Douglas Cochran, Michael Downes, Victor Eijkhout, Danie Els, Robin Fairbairns, Simon Fear, Kai von Finkel, Daniel Richard G, Romano Giannetti, Kathryn Hargreaves, Sven Hartrumpf, Florence Henry, Cartsten Heinz, Peter Heslin, Morton Høgholm, Henrik Holm, Vladimir Ivanovich, Stefan Kahrs, Jøgen Larsen, Kevin Lin, Matthew Lovell, Daniel Luecking, Lars Madsen, Vittorio De Martino, Frank Mittelbach, Rolf Niepraschk, Patrik Nyman, Heiko Oberdiek, Scott Pakin, Adriano Pascoletti, Robert, Chris Rowley, Bernd Raichle, Doug Schenck, Rainer Schöpf, Paul Stanley, Reuben Thomas, Bastiaan Niels Veelo, Emanuele Vicentini, Jürgen Vollmer, and others.

If I have inadvertently left anyone off the list I apologise, and please let me know so that I can correct the omisssion.

Of course, none of this would have been possible without Donald Knuth's TeX system and the subsequent development of LaTeX by Leslie Lamport.

Terminology

Like all professions and trades, typographers and printers have their specialised vocabulary.
First there is the question of pages, leaves and sheets. The trimmed sheets of paper that make up a book are called leaves, and I will call the untrimmed sheets the stock material. A leaf has two sides, and a page is one side of a leaf. If you think of a book being opened flat, then you can see two leaves. The front of the righthand leaf, is called the recto page of that leaf, and the side of the lefthand leaf that you see is called the verso page of that leaf. So, a leaf has a recto and a verso page. Recto pages are the odd-numbered pages and verso pages are even-numbered.

Then there is the question of folios. The typographical term for the number of a page is folio. This is not to be confused with the same term as used in 'Shakespeare's First Folio' where the reference is to the height and width of the book, nor to its use in the phrase 'folio signature' where the term refers to the number of times a printed sheet is folded. Not every page in a book has a printed folio, and there may be pages that do not have a folio at all. Pages with folios, whether printed or not, form the pagination of the book. Pages that are not counted in the pagination have no folios.

A font is a set of characters. In the days of metal type and hot lead a font meant a complete alphabet and auxiliary characters in a given size. More recently it is taken to mean a complete set of characters regardless of size. A font of roman type normally consists of CAPITAL LETTERS, SMALL CAPITALS, lowercase letters, numbers, punctuation marks, ligatures (such as 'fi' and 'ffi'), and a few special symbols like \&. A font family is a set of fonts designed to work harmoniously together, such as a pair of roman and italic fonts.

The size of a font is expressed in points (72.27 points equals 1 inch equals 25.4 millimeters). The size is a rough indication of the height of the tallest character, but different fonts with the same size may have very different actual heights.

The typographers' and printers' term for the vertical space between the lines of normal text is leading, which is also usually expressed in points and is usually larger than the font size. A convention for describing the font and leading is give the font size and leading separated by a slash; for instance $10 / 12$ for a 10 pt font set with a 12 pt leading, or $12 / 14$ for a 12 pt font set with a 14 pt leading.

The normal length of a line of text is often called the measure and is normally specified in terms of picas where 1 pica equals 12 points $(1 \mathrm{pc}=12 \mathrm{pt})$.

Documents may be described as being typeset with a particular font with a particular size and a particular leading on a particular measure; this is normally given in a shorthand form. A 10 pt font with 11 pt leading on a 20 pc measure is described as $10 / 11 \times 20$, and $14 / 16 \times 22$ describes a 14 pt font with 16 pt leading set on a a 22 pc measure.

Table 1: Printers units

Name (abbreviation)	Value
point (pt)	
pica (pc)	$1 \mathrm{pc}=12 \mathrm{pt}$
inch (in)	$1 \mathrm{in}=72.27 \mathrm{pt}$
centimetre (cm)	$2.54 \mathrm{~cm}=1 \mathrm{in}$
millimetre (mm)	$10 \mathrm{~mm}=1 \mathrm{~cm}$
big point (bp)	$72 \mathrm{bp}=72.27 \mathrm{pt}$
didot point (dd)	$1157 \mathrm{dd}=1238 \mathrm{pt}$
cicero (cc)	$1 \mathrm{cc}=12 \mathrm{dd}$

Units of measurement

Typographers and printers use a mixed system of units, some of which we met above. The fundamental unit is the point; Table 1 lists the most common units employed.

Points and picas are the traditional printers units used in English-speaking countries. The didot point and cicero are the corresponding units used in continental Europe. In Japan 'kyus' (a quarter of a millimetre) may be used as the unit of measurement. Inches and centimetres are the units that we are all, or should be, familiar with.

The point system was invented by Pierre Fournier le jeune in 1737 with a length of 0.349 mm . Later in the same century François-Ambroise Didot introduced his point system with a length of 0.3759 mm . This is the value still used in Europe. Much later, in 1886, the American Type Founders Association settled on 0.013837 in as the standard size for the point, and the British followed in 1898. Conveniently for those who are not entirely metric in their thinking this means that six picas are approximately equal to one inch.

The big point is somewhat of an anomaly in that is a recent invention. It tends to be used in page markup languages, like PostScript ${ }^{7}$, in order to make to make calculations quicker and easier.

The above units are all constant in value. There are also some units whose value depends on the particular font being used. The $e m$ is the nominal height of the current font; it is used as a width measure. An en is half an em. The ex is nominally the height of the letter ' x ' in the current font. You may also come across the term quad, often as in a phrase like 'starts with a quad space'. It is a length defined in terms of an em, often a quad is 1 em .

[^5]
Part I

Art and Theory

Chapter 1

The Parts of a Book

1.1 Introduction

This chapter describes the various parts of a book, the ordering of the parts, and the typical page numbering scheme used in books.

1.2 Front matter

There are three major divisions in a book: the front matter or preliminaries, the main matter or text, and the back matter or references. The main differences as far as appearance goes is that in the front matter the folios are expressed as roman numerals and sectional divisions are not numbered. The folios are expressed as arabic numerals in the main and back matter. Sectional divisions are numbered in the main matter but not in the back matter.

The front matter consists of such elements as the title of the book, a table of contents, and similar items. The first few pages in the front matter are not paginated and so do not have folios. The remainder are paginated and the folios are usually expressed as roman numerals. Not all books have all the elements described below.

The first page is a recto half title page with no folio. The page is very simple and displays just the main title of the book - no subtitle, author, or other information. One purported purpose of this page is to protect the main title page.

The first verso page, the back of the half-title page, may contain the series title, if the book is one in a series, a list of contributors, a frontispiece, or may be blank. The series title may instead be put on the half-title page or on the copyright page.

The title page is recto and contains the full title of the work, the names of the author(s) or editor(s), and often at the bottom of the page the name of the publisher, together with the publisher's logo if it has one.

The title page(s) may be laid out in a simple manner or can have various fol-de-rols, depending on the impression the designer wants to give. In any event the style of this page should give an indication of the style used in the main body of the work.

The verso of the title page is the copyright page. This contains the copyright notice, the publishing/printing history, the country where printed, ISBN and/or CIP information. The page is usually typeset in a smaller font than the normal text.

Table 1.1: Front matter

Element	Page	Paginated	Leaf
Half-title page	recto	no	1
Frontispiece, etc., or blank	verso	no	1
Title page	recto	no	2
Copyright page	verso	no	2
Dedication	recto	no	3
Blank	verso	no	3
Table of Contents	recto	yes	3 or 4
List of Figures	recto or verso	yes	3 or 4
List of Tables	recto or verso	yes	etc.
Foreword	recto or verso	yes	etc.
Preface	recto or verso	yes	etc.
Acknowledgements	recto or verso	yes	etc.
Introduction	recto or verso	yes	etc.
Abbreviations, etc	recto or verso	yes	etc.

Following the copyright page may come a dedication or an epigraph, on a recto page, with the following verso page blank.

This essentially completes the unpaginated pages.
The headings and textual forms for the paginated pages should be the same as those for the main matter, except that headings are usually unnumbered.

The first paginated page, usually with roman numerals (e.g., this is folio i), is recto with the Table of Contents (ToC). If the book contains figures (illustrations) and/or tables, the List of Figures (LoF) and/or List of Tables (LoT) come after the ToC, with no blank pages separating them. The ToC should contain an entry for each following major element. If there is a LoT, say, this should be listed in the ToC. The main chapters must be listed, of course, and so should elements like a preface, bibliography or an index.

There may be a foreword after the listings, with no blank separator. A foreword is usually written by someone other than the author, preferably an eminent person, and is signed by the writer. The writer's signature is often typeset in small caps after the end of the piece.

A preface is normally written by the author, in which he includes reasons why he wrote the work in the first place, and perhaps to provide some more personal comments than would be justified in the body. A preface starts on the page immediately following a foreword, or the lists.

If any acknowledgements are required that have not already appeared in the preface, these may come next in sequence.

Following may be an introduction if this is not part of the main text. The last elements in the front material may be a list of abbreviations, list of symbols, a chronology of events, a family tree, or other information of a like sort depending on the particular work.

Table 1.1 summarises the potential elements in the front matter.
Note that the titles Foreword, Preface and Introduction are somewhat interchangeable. In some books the title Introduction may be used for what is described here as the preface, and similar changes may be made among the other terms and titles in other books.

Copyright page

Most people are familiar with titles, ToC, prefaces, etc., but like me are probably less familiar with the contents of the copyright page. In any event this is usually laid out by the publishing house, but some authors may like to be, or are forced into being, their own publisher.

The main point of the copyright page is to display the copyright notice. The Berne Convention does not require that published works carry a copyright notice in order to secure copyright protection but most play it on the safe side and include a copyright notice. This usually comes in three parts: the word Copyright or more usually the symbol © , the year of publication, and the name of the copyright owner. The copyright symbol matches the requirements of the Universal Copyright Convention to which the USA, the majority of European and many Asian countries belong. The phrase 'All rights reserved' is often added to ensure protection under the Buenos Aires Convention, to which most of the Americas belong. A typical copyright notice may look like:
(c) 2035 by Frederick Jones. All rights reserved.

Somewhere on the page, but often near the copyright notice, is the name and location(s) of the publisher.

Also on the copyright page is the publishing history, denoting the edition or editions ${ }^{1}$ and their dates, and often where the book has been printed. One thing that has puzzled me in the past is the mysterious row of numbers you often see, looking like:

$$
020100999897 \quad 1098765
$$

The set on the left, reading from right to left, are the last two digits of years starting with the original year of publication. The set on the right, and again reading from right to left, represents the potential number of new impressions (print runs). The lowest number in each group indicates the edition date and the current impression. So, the example indicates the fifth impression of a book first published in 1997.

In the USA, the page often includes the Library of Congress Cataloging-in-Publication (CIP) data, which has to be obtained from the Library of Congress. This provides some keywords about the book.

The copyright page is also the place for the ISBN (International Standard Book Number) number. This uniquely identifies the book. For example: ISBN 0-NNN-NNNNN-2. The initial 0 means that the book was published in an English-speaking country, the next group of digits identify the publisher, the third group identifies the particular book by the publisher, and the final digit, 2 in the example, is a check digit.

It is left as an exercise for the reader to garner more information about obtaining CIP and ISBN data.

1.3 Main matter

The main matter forms the heart of the book.
All pages within the main matter are paginated, even though some folios may not be expressed. The folios are normally presented as arabic numerals, with the numbering starting at 1 on the first recto page of the main matter.

[^6]The main matter is at least divided into chapters, unless it is something like a young child's book which consists of a single short story. The chapters may be grouped within parts which would then be the highest level of division within the book. Typically both parts and chapters are numbered. Obviously, part numbering should be continuous throughout the book, but even with parts the chapter numbering is also continuous throughout the book.

The title of a part is usually on a recto page which just contains the part title, and number if there is one. Chapters also start on recto pages but in this case the text of the chapter starts on the same page as the chapter title.

Chapters may be divided into sections, either numbered or unnumbered, with the numbering scheme starting afresh within each chapter. Similarly sections may be partitioned into subsections but except for more technical works this is usually as fine as the subdivisions need go to. Normally there are no required page breaks before the start of any subdivisions within a chapter.

The title page of a part or chapter need not have the folio expressed, nor a possibly textless verso page before the start of a chapter, but all other pages should display their folios.

There may be a final chapter in the main matter called Conclusions, or similar, which may be a lengthy summary of the work presented, untouched areas, ideas for future work, and so on.

If there are any numbered appendices they logically come at the end of the front matter. Appendices are often 'numbered' alphabetically rather than numerically, so the first might be Appendix A, the second Appendix B, and so on.

An epilogue or an afterword is a relatively short piece that the author may include. These are not normally treated as prominently as the preceding chapters, and may well be put into the back matter if they are unnumbered.

1.4 Back matter

The back matter is optional but if present conveys information ancilliary to that in the main matter.

An unnumbered appendix would normally come in the back matter.
Other elements include Notes, a Glossary and/or lists of symbols or abbreviations, which could be in the front matter instead. These elements are normally unnumbered, as is any list of contributors, Bibliography or Index.

In some instances appendices and notes may be given at the end of each chapter instead of being lumped at the back.

The first element in the back matter starts on a recto page but the remainder may start on either recto or verso pages.

In older books it was often the custom to have a colophon as the final element in a book. This is an inscription which includes information about the production and design of the book and nearly always indicates which fonts were used.

Table 1.2: Common signatures

Name	Folds	Size	Sheets	Leaves	Pages
Broadside	0	$a \times b$	1	1	2
Folio	1	$b / 2 \times a$	1	2	4
Quarto, 4to	2	$a / 2 \times b / 2$	2	4	8
Octavo, 8vo	3	$b / 4 \times a / 2$	4	8	16
16mo	4	$a / 4 \times b / 4$	8	16	32
32mo	5	$b / 8 \times a / 4$	16	32	64
$64 m o$	6	$a / 8 \times b / 8$	32	64	128

1.5 Signatures and casting off

Professionally printed books have many pages printed per sheet of (large) paper, which is then folded and cut where necessary to produce a signature of several smaller sheets. An unfolded sheet is called a broadside. Folding a sheet in half produces a one sheet folio signature with two leaves and four pages. Folding it in half again and cutting along the original fold gives a two sheet quarto signature with four leaves and eight pages. Folding in half again, results in a four sheet octavo signature with eight leaves and 16 pages, and so on as listed in Table 1.2 .

In Table 1.2 the Size column is the untrimmed size of a leaf in the signature with respect to the size of the broadside. When made up into a book the leaves will trimmed to a slightly smaller size, at the discretion of the designer and publisher; typically a minimum of $1 / 8$ inch or 3 millimetres would be trimmed from the top, bottom and foredge of a leaf.

Other folds can produce other signatures. For example a sexto, obtained by folding in thirds and then folding in half, is a three sheet signature with six leaves and 12 pages.

In making up the book, the pages in each signature are first fastened together, usually by sewing through the folds. The signatures are then bound together and the covers, end papers and spine are attached to form the completed whole.

Publishers like the final typeset book to be of a length that just fits within an integral number of signatures, with few if any blank pages required to make up the final signature. Casting off is the process of determining how many lines a given text will make in a given size of type, and hence how many pages will be required.

To cast off you need to know how many characters there will be in a line, and how many characters there are, or will be, in the text. For the purposes of casting off, 'characters' includes punctuation as well as letters and digits. The first number can be easily obtained, either from copy fitting tables or by measurement; this is described in more detail in $\$ 2.3$. The second is more problematic, especially when the manuscript has yet to be written. A useful rule of thumb is that words in an English text average five letters plus one space (i.e., six characters); word length in technical texts might be greater than this.

To determine the number of words it is probably easiest to type a representative portion of the manuscript, hand count the words and then divide that result by the proportion of the complete text that you have typed. For example, if you have typed $1 / 20$ th of the whole, then divide by $1 / 20$, which is equivalent to multiplying by 20 . To fully estimate the number of pages required it is also necessary to make allowance for chapter titles, illustrations, and so forth.

If it turns out, say, that your work will require 3 signatures plus 2 pages then it will be more convenient to make it fit into 3 signatures, or 4 signatures minus a page or two. This can be done by expanding or cutting the text and/or by changing the font and/or by changing the number or width of lines on a page.

When I was editing a technical journal the authors were given a word limit. The primary reason was not that we were interested in the actual word count but rather so that we could estimate, and possibly limit, the number of pages allotted to each article; we used octavo signatures and no blank pages. I suspect that it is the same with most publishers - it is the page count not the word count that is important to them.

In some special cases, extra pages may be 'tipped in' to the body of the book. This is most likely to occur for illustrations which require special paper for printing and it would be too costly to use that paper for the whole work. Another example is for a fold-out of some sort, a large map, say, or a triple spread illustration. The tipped in pages are glued into place in the book and may or may not be paginated. For tipped in illustrations, a List of Illustrations may well start with a phrase like: 'Between pages 52 and 53'.

Chapter 2

The page

Authors usually want their works to be read by others than themselves, and this implies that their manuscript will be reproduced in some manner. It is to be hoped that the published version of their work will attract readers and there are two aspects to this. The major is the actual content of the work - the thoughts of the author couched in an interesting manner - if something is boring, then there are too many other interesting things for the reader to do than to plow on until the bitter end, assuming that he even started to read seriously after an initial scan. The other aspect is the manner in which the content is displayed. Or, in other words, the typography of the book, which is the subject of this chapter.

The essence of good typography is that it is not noticeable at first, or even second or later, glances to any without a trained eye. If your initial reaction when glancing through a book is to exclaim about its layout then it is most probably badly designed, if it was designed at all. Good typography is subtle, not strident.

With the advent of desktop publishing many authors are tempted to design their own books. It is seemingly all too easy to do. Just pick a few of the thousands of fonts that are available, use this one for headings, that one for the main text, another one for captions, decide how big the typeblock is to be, and there you are.

However, just as writing is a skill that has to be learned, typography is also an art that has to be learned and practised. There are hundreds of years of experience embodied in the good design of a book. These are not to be cast aside lightly and many authors who design their own books do not know what some of the hard-earned lessons are, let alone that what they are doing may be the very antithesis of these. An expert can break the rules, but then he is aware that he has good reasons for breaking them.

The author supplies the message and the typographer supplies the medium. Contrary to Marshall McLuhan, the medium is not the message, and the typographer's job is not to intrude between the message and the audience, but to subtly increase the reader's enjoyment and involvement. If a book shouts 'look at me!' then it is an advertisement, and a bad one at that, for the designer.

2.1 The shape of a book

Books come in many shapes and sizes, but over the centuries certain shapes have been found to be more pleasurable and convenient than others. Thus books, except for a very very
few, are rectangular in shape. The exceptions on the whole are books for young children, although I do have a book edited by Fritz Spiegl and published by Pan Books entitled A Small Book of Grave Humour, which is in the shape of a tombstone - this is an anthology of epitaphs. Normally the height of a book, when closed, is greater than the width. Apart from any aesthetic reasons, a book of this shape is physically more comfortable to hold than one which is wider than it is high.

It might appear that the designer has great freedom in choosing the size of the work, but for economic reasons this is not normally the case. Much typographical design is based upon the availabilty of certain standard industrial sizes of sheets of paper. A page size of 12×8 inches will be much more expensive than one which fits on a standard US letter sheet of $11 \times 81 / 2$ inches. Similarly, one of the standard sizes for a business envelope is $41 / 8 \times 91 / 2$ inches. Brochures for mailing should be designed so that they can be inserted into the envelope with minimal folding. Thus a brochure size of 5×10 inches will be highly inconvenient, no matter how good it looks visually.

Over the years books have been produced in an almost infinite variety of proportions, where by proportion I mean the ratio of the height to the width of a rectangle. However, certain proportions occur time after time throughout the centuries and across many different countries and civilizations. This is because some proportions are inherently more pleasing to the eye than others are. These pleasing proportions are also commonly found in nature - in physical, biological, and chemical systems and constructs.

Some examples of pleasing proportions can be seen in Japanese wood block prints, such as the Hoso-ye size $(2: 1)$ which is a double square, the Oban $(3: 2)$, the Chuban $(11: 8)$ and the Koban size $(\sqrt{2}: 1)$. Sometimes these prints were made up into books, but were often published as stand-alone art work. Similarly Indian paintings, at least in the 16 th to the 18 th century, often come in the range $1.701: 1$ to $13: 9$, thus being around $3: 2$ in proportion.

In medieval Europe page proportions were generally in the range $1.25: 1$ to $1.5: 1$. Sheets of paper were typically produced in the proportion $4: 3(1.33: 1)$ or $3: 2(1.5: 1)$. These proportions have the property that they are reproduced with each alternate folding of the sheet. For example, if a sheet starts at a size of 60×40 (i.e., $3: 2$), then the first fold will make a double sheet of size 30×40 (i.e., $3: 4$). The next fold will produce a quadrupled sheet of size 30×20, which is again $3: 2$, and so on. It is an interesting fact, though, that it is impossible to fold a sheet of paper, no matter how large and thin, more than six times altogether. The Renaissance typographers tended to like taller books, and their proportions would go up to $1.87: 1$ or so. The style nowadays has tended to go back towards the medieval proportions.

The standard ISO page proportions are $\sqrt{2}: 1(1.414: 1)$. These have a similar property to those of medieval times. However, in this case each fold reproduces the page proportion. Thus halving an A0 sheet (size $1189 \times 841 \mathrm{~mm}$) produces an A1 size sheet (594×841), which in turn being halved produces the A2 sheet (420×594), down through the A3, A4 $(210 \times 297 \mathrm{~mm})$, and A5 sheets.

There is no one perfect proportion for a page, although some are clearly better than others. For ordinary books both publishers and readers tend to prefer books whose proportions range from the light $9: 5(1.8: 1)$ to the heavy $5: 4(1.25: 1)$. Some examples are shown in Figure 2.1. Wider pages, those with proportions less than $\sqrt{2}: 1(1.414: 1)$, are principally useful for documents that need extra width for tables, marginal notes, or where multi-column printing is preferred.

Figure 2.1: Some page proportions

In books where the illustrations are the primary concern, the shape of the illustrations is generally the major influence on the page proportion. The page size should be somewhat higher than that of the average illustration. The extra height is required for the insertion of captions describing the illustration. A proportion of $\pi: e(1.156: 1)$, which is slightly higher than a perfect square, is good for square illustrations. ${ }^{1}$ The $e: \pi(0.864: 1)$ proportion is useful for landscape photographs taken with a 4×5 format camera, while those from a 35 mm camera (which produces a negative with a $2: 3$ proportion) are better accomodated on a $0.83: 1$ page.

The golden section and Fibonacci series

Typographers need a modicum of mathematical ability, but no more than an average teenager can do - basically simple arithmetic. You can skip this section if you wish as it just provides some background mathematical material which might be of interest.

Since ancient Greek times or even before, the golden section, which is denoted by the Greek letter φ (phi), has been considered to be a particularly harmonious proportion. It should come as no surprise, then, that this also has applications in typography.

The Greeks were interested in geometry (think of Euclid). They discovered that if you divide a straight line into two unequal parts then a certain division appeared to have an especially appealing aesthetic quality about it. Call the length of the line l and the length of the two parts a and b, where a is the smaller and b is the larger. The division in question is when the ratio of the larger to the smaller division (b / a) is the same as the ratio of the whole line to the larger division (l / b). More formally, two elements embody the golden section, symbolised by φ, when the ratio of the larger to the smaller is the same as the ratio of the sum of the two to the larger. If the two elements are a and b, with $a<b$, then

$$
\begin{equation*}
\varphi=\frac{b}{a}=\frac{a+b}{b}=(1+\sqrt{5}) / 2 \tag{2.1}
\end{equation*}
$$

The golden section has been called by a number of different names during its history. Euclid called it the 'extreme and mean ratio' while Renaissance writers called it the 'divine proportion'; now it is called either the 'golden section' or the 'golden ratio'. The symbol φ is said to come from the name of the Greek artist Phidias (C5th BC) who often used the golden section in his sculpture. A rectangle whose sides are in the same proportion as the golden section is often called a 'golden rectangle'. The front of the Parthenon on the Acropolis in Athens is a golden rectangle, and such rectangles appear often in Greek architecture. The symbol of the Pythagoran school was the star pentagram, where each line is divided in the golden section.

The approximate decimal value for φ is 1.61803 . The number has some unusual properties. If you add one to φ you get its square, while subtracting one from φ gives its reciprocal.

$$
\begin{align*}
\varphi+1 & =\varphi^{2} \tag{2.2}\\
\varphi-1 & =1 / \varphi \tag{2.3}
\end{align*}
$$

[^7]It also has a very simple definition as the continued fraction

$$
\begin{equation*}
\varphi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}} \tag{2.4}
\end{equation*}
$$

In 1202 Leonardo Pisano, also known as Leonardo Fibonacci, wrote a book called Liber Abbaci. ${ }^{2}$ One of the topics he was interested in was population growth. The book included this exercise:

How many pairs of rabbits can be produced from a single pair in a year? Assume that each pair produces a new pair of offspring every month, a rabbit becomes fertile at age one month, and no rabbits die during the year.
After a month there will be two pairs. At the end of the next month the first pair will have produced another pair, so now there are three pairs. At the end of the following month the original pair will have produced a third pair of offspring and their firstborn will also have produced a pair, to make five pairs in all. And so on. If, like the rabbits, you are not too exhausted to continue, you can get the following series of numbers ${ }^{3}$:

$$
0,1,1,2,3,5,8,13,21,34,55,89 \ldots
$$

After the first two terms, each term in the series is the sum of the two preceding terms. Also, as one progresses along the series, the ratio of any adjacent pair of terms oscillates around $\varphi(=1.618 \ldots)$, approaching it ever more closely.

$$
\begin{aligned}
8 / 5 & =1.6 \\
13 / 8 & =1.625 \\
21 / 13 & =1.615 \\
34 / 21 & =1.619 \\
55 / 34 & =1.6176 \\
89 / 55 & =1.6182
\end{aligned}
$$

For the mathematically inclined there is another, to me, striking relationship between φ and the Fibonacci series. Define the Fibonacci numbers as F_{n}, where

$$
\begin{equation*}
F_{0}=0 ; \quad F_{1}=1 ; \quad F_{n+2}=F_{n+1}+F_{n}, \quad n \geq 0 \tag{2.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{n}=\frac{1}{\sqrt{5}}\left(\varphi^{n}-(-\varphi)^{-n}\right) \tag{2.6}
\end{equation*}
$$

Both the Fibonacci series and the golden section appear in nature. The arrangement of seeds in a sunflower, the pattern on the surface of a pinecone, and the spacing of leaves around a stalk all exhibit Fibonacci paterns (for example see CG96). Martin Gardener Gar66] reports on studies that claimed that the average ratio of a person's height to the height of the navel is $1.618+$ - suspiciously close to φ.

[^8]
2.2 The spread

The typeblock is that part of the page which is normally covered with type. The same proportions that are useful for the shape of a page are also useful for the shape of the typeblock. This does not mean, though, that the proportions of the page and the typeblock should be the same. For instance, a square typeblock on a square page is inherently dull.

When we first start to learn to read we scan horizontally along each line of text. As our skills improve we tend to scan vertically rather than horizontally. A tall column of text helps in this process, provided that the column is not too wide.

A page in a book will typically contain several elements. Principal among these is the typeblock, but there are also items like the folio (that is, the page number), a running head and/or foot which carries the chapter and/or book title, and possibly marginalia and footnotes. These latter elements, although essential to the content of the book, are minor visual elements compared to the typeblock. But even minor decoration can obscure or kill an otherwise good design.

The major concern is the positioning of the typeblock on the page. The mere fact of positioning the typeblock also has the result of producing margins onto the page. Page design is a question of balancing the page proportions with the proportions of the typeblock and the proportions of the margins to create an interesting yet harmonious composition. A single page, except for a title page, is never the subject of a design but rather the design is in terms of the two pages that are on view when a book is opened - the left and right hand pages are considered as a whole. More technically, the design is in terms of a double spread.

Table 2.1 gives some examples of page designs. These are arranged in increasing order of fatness. In this table, and afterwards, I have just used a single number to represent the ratio of the page height to the width; that is, for example, 1.5 instead of $1.5: 1$ or $12 / 7$ instead of $12: 7$. The following symbols are used in the table:

Proportions :

$$
\begin{aligned}
& P=\text { page proportion }=h / w \\
& T=\text { typeblock proportion }=d / m
\end{aligned}
$$

Page size :

$$
w=\text { width of page }
$$

$$
h=\text { height of page }
$$

Typeblock :

$m=$ measure (i.e., width) of primary typeblock
$d=$ depth (excluding folios, running heads, etc.)

Margins :

$s=$ spine margin (back margin)
$t=$ top margin (head margin)
$e=$ fore-edge (front margin)

Table 2.1: Some page designs

P	T	Margins \& Columns					Figure
		s	,	e	f	g	
$\sqrt{3}$	2	$w / 13$	$8 s / 5$	16s/5	16s/5		2.2 left
$\sqrt{3}$	e / φ	$w / 10$	$2 s$	$2 s$	3 s		2.2 right
$12 / 7$	1.701	$w / 7$	$8 s / 5$	$8 s / 5$	$14 s / 5$		2.3 left
e / φ	7/4	$w / 10$	$5 s / 4$	$5 s / 3$	$11 s / 8$		2.3 right
φ	1.866	$w / 9$	s	$2 s$	$7 s / 3$		2.4 left
φ	φ	$w / 12$	$2 s$	$5 s / 2$	$4 s$		2.4 right
8/5	1.634	$2 w / 15$	$7 s / 5$	$9 s / 5$	$13 s / 5$		2.5 left
19/12	7/4	$2 w / 15$	s	$9 s / 8$	$11 s / 8$		2.5 right
19/12	$\sqrt{3}$	$w / 7$	s	$5 s / 4$	1.84 s		2.6 left
19/12	8/5	$w / 12$	$7 s / 5$	$8 s / 5$	2 s		2.6 right
$\pi / 2$	9/5	$w / 9$	$3 s / 2$	$5 s / 2$	3 s		2.7 left
$e / \sqrt{3}$	1.71	$w / 10$	11s/8	$24 s / 11$	$8 s / 3$		2.7 right
1.553	1.658	$w / 11$	φs	φs	φs		2.8 left
1.538	$\sqrt{7}$	$w / 10$	s	$23 s / 6$	$3 s / 2$		2.8 right
$3 / 2$	2	$w / 5$	$s / 2$	s	s		2.9 left
$3 / 2$	1.701	$w / 9$	s	$2 s$	$7 s / 3$		2.9 right
$3 / 2$	$\pi / 2$	$w / 13$	$2 s$	$10 s / 3$	$30 s / 7$		2.10 left
$3 / 2$	$3 / 2$	$w / 9$	$3 s / 2$	$2 s$	3 s		2.10 right
$3 / 2$	1.68	$w / 23$	$2 s$	$5 s$	$2 s$		2.11 left
$3 / 2$	3/2	$w / 10$	$2 s$	$5 s / 2$	2.85 s		2.11 right
1.48	1.376	$w / 12$	$7 s / 4$	$2 s$	$7 s / 2$		2.12 left
13/9	$\sqrt{2}$	$w / 30$	$2 s$	$9 s / 2$	4 s	$s / 2$	$\underline{2.12}$ right
$\sqrt{2}$	φ	$w / 9$	s	$2 s$	$2 s$		2.13 left
$\sqrt{2}$	φ	$w / 8$	s	$5 s / 3$	$5 s / 3$		2.13 right
$7 / 5$	1.641	$w / 7$	s	$8 s / 5$	$8 s / 5$		2.14 left
1.294	φ	$0.176 w$	1.03 s	1.685 s	$13 s / 9$		2.14 right
1.294	13/9	$w / 12$	s	$2 s$	$10 s / 7$	$s / 2$	2.15 left
9/7	19/9	$2 w / 5$	5s/8	$5 s / 8$	$5 s / 6$		2.15 right
5/4	13/11	$w / 10$	$3 s / 2$	$2 s$	$8 s / 3$		2.16 left
7/6	17/15	$w / 13$	s	s	$7 s / 5$. 382	2.16 right
e / π	0.951	$w / 9$	s	$2 s$	$3 s / 2$		2.17 left
$5 / 7$	$2 / 3$	$w / 9$	$s / 2$	$2 s / 3$		$s / 3$	2.17 right

Figure 2.2: Two spreads: (Left) Canada, 1992. (Right) England, 1970.

Figure 2.3: Two spreads: (Left) USA, 1909. (Right) England, 1964.

$$
\begin{aligned}
& f=\text { foot margin (bottom margin) } \\
& g=\text { internal gutter (on a multi-column page) }
\end{aligned}
$$

The designs are also shown in Figures 2.2 to 2.17. Each of these shows a double page spread; the page width has been kept constant throughout the series to enable easier visual comparison - it is the relative proportions, not the absolute size, that are important. I have only shown the pages and the typeblocks to avoid confusing the diagrams with headers, footers or folios.

Shown in Figure 2.2 are two modern books. On the left is the layout for Robert Bringhurst's The Elements of Typographical Style published by Hartley \& Marks in 1992, and designed by Bringhurst. The text face is Minion set with 12pt leading on a 21 pc measure. The captions are set in Syntax. The original size is $227 \times 132 \mathrm{~mm}$. I highly recommend this book if you are interested in typography. The layout on the right is The Folio Society's 1970 edition of The Prince by Niccolo Machiavelli. The original size is $216 \times 125 \mathrm{~mm}$ and is set in $12 / 13 \times 22$ Centaur.

Figure 2.3 (left) illustrates a small book by Wilfred T. Grenfell entitled Adrift on an Ice-Pan published in 1909 by the Riverside Press of Boston. The text is set with a leading of 16 pt on a 16 pc measure. The large leading and small measure combine to give a very open appearance. The original size is $184 \times 107 \mathrm{~mm}$. On the right is another book from the

Figure 2.4: Two spreads: (Left) France, 1559. (Right) Canada, 1995.

Figure 2.5: Two spreads: (Left) USA, 1949. (Right) USA, 1990.

Folio Society - Three Men in a Boat by Jerome K. Jerome printed in 1964. The original size is $215 \times 128 \mathrm{~mm}$ and is typeset with Ehrhardt at $11 / 12 \times 22$.

Jean de Tourmes, a Parisian publisher, printed Histoire et Chronique by Jean Froissart in 1559. This is a history book with the main text in roman and sidenotes in italic at roughly 80% of the size of the main text. The layout is shown in Figure 2.4 (left). The gutter (not shown) between the main text and the sidenote column is very small, but the change in fonts and sizes enables the book to be read with no confusion. Another Hartley \& Marks typography book - Finer Points in the Spacing \mathcal{G} Arrangement of Type by Geoffrey Dowding - is shown at the right of Figure 2.4. This is typeset in Ehrhardt at $10.5 / 14 \times 23$ on a page size of $231 \times 143 \mathrm{~mm}$.

Bruce Rogers (1870-1957) described how he came to design his Centaur typeface in Centaur Types, a privately published book by his studio October House in 1949. The layout of this book, which of course was typeset in Centaur, is shown at the left of Figure 2.5 . Centaur is an upright seriffed type based on Nicolas Jenson's type as used in Eusebius published in 1470. Centaur Types demonstrates typefaces other than Centaur, and also includes exact size reproductions of the engraver's patterns. It is set at $14 / 16 \times 22$ on a page size of $240 \times 150 \mathrm{~mm}$. Figure 2.5 (right) is the layout of another book on typefaces. It is The Anatomy of a Typeface by Alexander Lawson published by David R. Godine in 1990. This is set in Galliard with 13pt leading and a measure of 24 pc on a page size of $227.5 \times 150 \mathrm{~mm}$.

Microcosmographica Academia by F. M. Cornford is shown in Figure 2.6. Despite its

Figure 2.6: Two spreads: (Left) England, 1908. (Right) USA, 1993.

Figure 2.7: Two spreads: (Left) USA, 1931. (Right) England, 1968.
title, it is written in English and was published by Bowes \& Bowes, London, in 1908. It is a dryly humourous look at academic politics as practised in Cambridge University at the turn of the nineteenth century (possibly the twentieth as well). It is set with 14 pt leading on 22 pc . The original page size is $216 \times 136 \mathrm{~mm}$. The right of this figure illustrates a book with another unusual title - The Alphabet Abcedarium by Richard A. Firmage and published by David R. Godine in 1993. It is set in Adobe Garamond on a 27 pc measure with 14 pt leading. The original page size is $227.5 \times 150 \mathrm{~mm}$. The book gives a history of each letter of the latin alphabet. One unusual feature is that there is a deep footer on each page showing many examples of typefaces of the letter being described.
W. A. Dwiggins was, among many other things, an American book designer. Figure 2.7 (left) shows his layout of H. G. Wells' The Time Machine for Random House in 1931. The page size is $231 \times 147 \mathrm{~mm}$. The right of the figure illustrates the layout of a book called Two Men - Walter Lewis and Stanley Morrison at Cambridge by Brooke Crutchley and published by Cambridge University Press in 1968. Crutchley was the Cambridge University Printer and each year would produce a limited edition of a book about Cambridge or typography, and preferably both together. This is typeset in Monotype Barbon with 17.5 leading on a 26 pc measure on a $253 \times 162 \mathrm{~mm}$ page.

A modern technical book layout is given in Figure 2.8. The book is Information Modeling the EXPRESS Way by Douglas Schenck and Peter Wilson, published by Oxford University Press (New York) in 1994. This is set in Computer Modern Roman at $10 / 12 \times 27$ on a page $233 \times 150 \mathrm{~mm}$. Ruari McLean's The Thames and Hudson Manual of Typography (1988)

Figure 2.8: Two spreads: (Left) USA, 1994. (Right) England 1988.

Figure 2.9: Two spreads: (Left) Italy, 1523. (Right) Italy 1499.
is at the right in Figure 2.8 . This is typeset in $10 / 11 \times 20$ Monophoto Garamond on a $240 \times 156 \mathrm{~mm}$ page. The wide foredge is used for small illustrations. Notes are also set in this margin rather than at the foot of the page.

Many page layouts in earlier days were constructed by drawing with compass and ruler, usually based on regular geometric figures; the use of squares, pentagons and hexagons being particularly prevelant. Unusually, the typeblock in Figure 2.9 (left) is centered on the page. The typeblock is based on a square, the depth being twice the measure. The book, Canzone by Giangiorgio Trissino, is a volume of poems and was published in Rome about 1523 by Ludovico degli Arrighi. Prose works from the same typographer followed the normal style of having the fore-edge wider than the spine margin. The page proportion in Figure 2.9 (right) is also a simple $3: 2$ ratio. The proportions of the typeblock, being 1.7, are based upon a pentagon. The book is Hypnerotomachia Poliphili by Francesco Colonna and was published by Aldus Manutius in Venice in 1499. The story of this, including some reproductions from the original, is told by Helen Barolini Bar92.

In 1519 the Portugese explorer Ferdinand Magellan set sail from Sanlúcar de Barramada, near Cádiz in Spain, with five ships and about 270 men. Three years later one ship and 18 men returned, having made the first circumnavigation. Among the few survivors was Antonio Pigafetta who recorded the adventure. A very few manuscripts of his report are in existence. The layout of one of these manuscripts which is in the Beinecke Rare Book and Manuscript Library at Yale is shown at the left of Figure 2.10. The manuscript, which is written in French, is called Navigation et descouurement de la Inde superieure et isles de Malueque ou naissent les cloux de Girosle (Navigation and discovery of Upper India and

Figure 2.10: Two spreads: (Left) France/Portugal, 1530. (Right) Gutenberg, C15th.

Figure 2.11: Two spreads: (Left) Persia, 1525. (Right) USA, 1975.
the Isles of Molucca where the cloves grow) is written in a beautiful humanistic miniscule. There are 27 lines to a page, which is $286 \times 190 \mathrm{~mm}$ and made of vellum. The text measure is 29.5 and the 'leading' is 21 pt . The wide fore margin is used for sidenotes indicating highlights of the story. The manuscript was probably prepared soon before 1530; the scribe and where he worked is unknown.

Many of the books produced by Johannes Gutenberg (1398-1468) and his early successors followed the form shown in Figure 2.10 (right). This set of proportions was also often used in medieval incunabula ${ }^{4}$ and manuscripts. The page and typeblock proportions are the same (3:2). The margins are in the proportions $2: 3: 4: 6$. A graphical method for constructing this, and similar designs, is shown later in Figure 2.18.

Two versions of the same publication are shown in Figure 2.11. On the left is a Persian manuscript Khamsch of Nizami written about 1525. The page size is about $324 \times 216 \mathrm{~mm}$. The illustrations and the typeblock are inextricably mixed. On the right is a translation of some of the manuscript published as Tales from the Khamsch of Nizami by the Metropolitan Museum of Art, New York, in 1975. The modern version has a page size of $300 \times 200 \mathrm{~mm}$, slightly smaller than the original but in the same proportions. The typeblock is 32 pc wide and the type is set with a 15 pt leading.

Frederic Goudy was a prolific American type designer. Shown at the left of Figure 2.12 is the layout of his book The Alphabet and Elements of Lettering published by the University of California Press in 1952. This is typeset in his University of California Old Style, which has interesting ct and st ligatures. The measure is 36 pc and the leading is 18 pt . The

[^9]

Figure 2.12: Two spreads: (Left) USA, 1952. (Right) England, 1087.

Figure 2.13: Two spreads: (Left) ISO (1). (Right) ISO (2).
first half of the book gives a short history of the development of writing and fonts. The second half consists of 27 plates, one for each letter of the alphabet, and the last one for the ampersand character. These show the evolution of each letter from Roman times to the mid-twentieth century.

Figure 2.12 (right) shows the layout of the English Domesday Book which is a manuscript book written in 1087. It records all the domains won by William the Conqueror in 1066. The book is written in a Caroline miniscule in two columns, with 44 lines per column ragged right. The two columns have slightly different widths. The first part of the book is more meticulously written than the later parts, where the scribe appears to be in haste to finish.

Figure 2.13 shows two different layouts for a page corresponding to the ISO international standard proportion of $\sqrt{2}$. In each case the typeblock is the same and proportioned in the golden section, but the margins are different. The layout on the left provides adequate room for marginal notes in the fore-edge.

Another of the Cambridge Printer's Christmas books is at the left of Figure 2.14 . In this case it is Emery Walker - Some Light on his Theories of Printing and on his Relations with William Morris and Cobden-Sanderson by Colin Franklin and published in 1973. The page size is $295 \times 210 \mathrm{~mm}$ with a measure of 31 pc set with 15 pt leading. On the right is the default layout provided by the LaTeX 10pt book class on US letterpaper.

Adrian Wilson, who died in 1988, was an acclaimed American book designer. His work on book design, The Design of Books, out of print since 1988 but reissued in 1993 by Chronicle Books, is outlined at the left of Figure 2.15. This is in two columns, with many illustrations, on letterpaper size pages. It is typeset in Palatino and Linotype Aldus with 12 pt leading. Each column is 18 pc wide. The other layout in this figure is B. W. Robinson's

Figure 2.14: Two spreads: (Left) England, 1973. (Right) LaTeX 10pt book style.

Figure 2.15: Two spreads: (Left) USA, 1967. (Right) England, 1982.

Figure 2.16: Two spreads: (Left) England, 1972. (Right) Switzerland, 1980.

Kuniyoshi: The Warrior Prints published by Phaidon, Oxford in 1982. The page size is $310 \times 242 \mathrm{~mm}$ with a measure of 28.5 pc. The type is set with 13 pt leading. The wide spine margin is used for some small reproductions of Japanese woodblock prints, some of which extend across the binding itself. The majority of the book has no text apart from captioning the many reproduced prints which take up full pages.

The Waterways of the Fens by Peter Eden with drawings by Warwick Hutton is another of the Cambridge Printer's Christmas books. This is set with 17 pt leading on a measure of 27pc. The original page size is $195 \times 150 \mathrm{~mm}$ and is illustrated on the left of Figure 2.16 . The amount of text on a page varies and there are many line drawings, some of which take a double spread. On the right of this figure is another art book, namely Dürer by Fedja Anzelewsky published by Chartwell Books in 1980. This is set in two columns with 14pt leading on a 23.5 pc measure, although there are more illustrations than text. The page size is $280 \times 240 \mathrm{~mm}$, considerably larger than its companion in the figure, yet with much smaller margins.

Figure 2.17: Two spreads: (Left) England, 1969. (Right) USA, 1989.

Two more layouts for illustrated books are given in Figure 2.17. In this case the illustrations are drawings in landscape mode (i.e., they are wider than they are high); the shape of the drawings has had a major effect on the page proportions. In the case on the left the page proportion is in the ratio $\pi: e$. The measure is longer than usual at 37 pc and to compensate for this the leading of 17 pt is also larger than customary. It is typeset in Centaur. The book is Hammer and Hand by Raymond Lister with drawings by Richard Bawden. It was published in 1969 by Cambridge University Press and is another of the University Printer's Christmas books. Shown on the right of Figure 2.17 is Hokusai - One Hundred Poets by Peter Morse and published by George Braziller in 1989. The introductory text is set in two columns as shown. The body consists of illustrations of Japanese wood block prints, originally in the large oban size of about $250 \times 380 \mathrm{~mm}$.

A geometric construction

Nowadays it is easy to pick and calculate any kind of page proportion that takes your fancy, but how did the early printers do it? They certainly did not have the use of calculators and I suspect that they had only enough arithmetic to keep their accounts. Printing was a craft and craftsmen did not release their trade secrets lightly. I believe that most of the designs were based on simple geometric figures, which required nothing more than a ruler and a pair of compasses.

Jan Tschichold gives a simple construction for the layout of many of Gutenberg's books [Tsc91, pages 44-57], which is shown in Figure 2.18. The construction actually divides the page up into ninths (the point P in the diagram, which is at the intersection of the main and half diagonal construction lines, is one third of the way down and across both the page and the typeblock). This construction can be used no matter what the page proportions and will give the same relative result.

2.3 The typeblock

The typeblock is not just a rectangular block of text. If the typeblock does consist of text, then this will normally be broken up into paragraphs; it is not good style to have paragraphs that are longer than a page. Also, the typeblock may include tables and illustrations which provide relief from straight text. Some pages may have chapter or section headings on them which will also break the run of the text. In general the typeblock will be a mixture of text, white space, and possibly non-text items.

Consider a typeblock that includes no illustrations or tables. The lines of text must be laid out so that they are easy to read. Common practice, and more recently psychological testing, has shown that long lines of text are difficult to read. Thus, there is a physiological

Figure 2.18: The construction of the Gutenberg page design
upper limit to the width of the typeblock. From a practical viewpoint, a line should not be too short because then there is difficulty in justifying the text.

Experiments have shown that the number of characters in a line of single column text on a page should be in the range 60 to 70 for ease of reading. The range may be as much as 45 to 75 characters but 66 characters is often considered to be the ideal number. Much shorter and the eye is dashing back and forth between each line. Much longer it is hard to pick up the start of the next line if the eye has to jump back too far - the same line may be read twice or the following line may be inadvertently jumped over. For double column text the ideal number of characters is around 45 , give or take 5 or so.

Bringhurst Bri92 gives a method for determining the number of characters in a line for any font: measure the length of the lowercase alphabet and use a copyfitting table that shows for a given alphabet length and line length, the average number of characters in that line. Table 2.2 is an abridged version of Bringhurt's copyfitting table. For example, it suggests that a font with a length of 130 pt should be set on a measure of about 26 pc for a single column or in an 18 pc wide column if there are multiple columns.

The vertical height of the typeblock should be constant from page to page. The lines of text on facing pages should be aligned horizontally across the spine, which also means that they will be at the same place on both sides of a leaf. Alignment across the spine means that the eye is not distracted by an irregularity at the centre of a spread, and leaf alignment stops ghosting of text through a thin page, giving a crisper look to the work. So, the spacing between lines should be constant. This implies that the depth of the typeblock should be an integral multiple of the space required for each line; that is, be specified as a multiple of the leading. A ten point type, for example, will normally have two points between lines, to give a leading of 12 points. This can be written as $10 / 12$. Usefully, one pica is 12 points so with a 12 pt leading vertical distances can be conveniently expressed in picas (one pica per line). Another implication of this is that any space left for illustrations or tables, or the amount of space taken by chapter and section headings should also be an integer multiple of the leading.

Table 2.2: Average characters per line

Pts.	Line length in picas							
	10	14	18	22	26	30	35	40
80	40	$\mathbf{5 6}$	$\mathbf{7 2}$	88	104			
85	38	53	$\mathbf{6 8}$	83	98	113		
90	36	50	$\mathbf{6 4}$	79	86	107		
95	34	48	$\mathbf{6 2}$	75	89	103		
100	33	46	$\mathbf{5 9}$	$\mathbf{7 3}$	86	99	116	
105	32	44	57	$\mathbf{7 0}$	82	95	111	
110	30	43	55	$\mathbf{6 7}$	79	92	107	
115	29	41	53	$\mathbf{6 4}$	76	88	103	
120	28	39	50	$\mathbf{6 2}$	73	84	98	112
125	27	38	48	$\mathbf{5 9}$	$\mathbf{7 0}$	81	94	108
130	26	36	47	57	$\mathbf{6 7}$	78	91	104
135	25	35	45	55	$\mathbf{6 5}$	75	88	100
140	24	34	44	53	$\mathbf{6 3}$	73	85	97
145	23	33	42	51	$\mathbf{6 1}$	$\mathbf{7 0}$	82	94
150	23	32	41	51	$\mathbf{6 0}$	$\mathbf{6 9}$	81	92
155	22	31	39	49	58	$\mathbf{6 7}$	79	90
160	22	30	39	48	56	$\mathbf{6 5}$	76	87
165	21	30	38	46	55	$\mathbf{6 3}$	74	84
170	21	29	37	45	53	$\mathbf{6 2}$	72	82
175	20	28	36	44	52	$\mathbf{6 0}$	$\mathbf{7 0}$	80
180	20	27	35	43	51	59	$\mathbf{6 8}$	78
185	19	27	34	42	49	57	$\mathbf{6 7}$	76
190	19	26	33	41	48	56	$\mathbf{6 5}$	74
195	18	25	32	40	47	54	$\mathbf{6 3}$	72
200	18	25	32	39	46	53	$\mathbf{6 2}$	$\mathbf{7 0}$
220	16	22	29	35	41	48	56	$\mathbf{6 4}$
240	15	20	26	32	38	44	51	58
260	14	19	24	30	35	41	48	54
280	13	18	23	28	33	38	44	50
300	12	17	21	26	31	35	41	47
320	11	16	20	25	29	34	39	45
340	10	15	19	23	27	32	37	42

A ten point type set solid is described as 10/10. The theoretical face of the type is ten points high, from the top of a d to the bottom of a p, and the distance of the baseline of one row of text to the next row of text is also ten points. Note that if a p is vertically above a b then the ascender of the b will meet the descender of the p. To avoid this, the vertical separation between baselines is increased above the type size. Adding two extra points of vertical space allows the text to breathe, and gives a leading of 12 points. Few fonts read well when set solid. Typical settings are $9 / 11,10 / 12,11 / 13$ and $12 / 15$. Longer measures require more leading than shorter ones, as do darker and larger fonts compared with lighter and smaller fonts. More leading is also useful if the text contains many superor sub-scripts, or many uppercase letters.

Page color

One of the aims of the typographer is to produce pages that are uniform in 'color'. By this they mean that the typeblock has a reasonably constant grayness, not being broken up by too much white space which is a distraction to the reader. There will be white space around headings, which is acceptable as a heading is meant to attract attention. There may be white space between paragraphs, but this is usually under the control of the designer. There may be vertical rivulets of white space when the interword spaces on adjacent lines coincide; fixing this usually requires some handwork, either by the author changing his wording so as to alter the location of the spaces, or by the typesetter tweaking a little bit.

Another form of distraction is if too many lines end with hyphens, or several adjacent lines start or end with the same text; this not only will cause a rivulet but will make it harder for the reader to reliably jump to the next line.

The main font used controls the depth of the color of a page. To see what color is produced by a particular font it is necessary to look at a fairly long, preferably a page, piece of normal text. Fonts from different families produce different colors, and so may mixed fonts from the same family. You can try this yourself by typesetting the same page in, say, Computer Modern Roman, Italic, and Sans fonts. The books by Rogers Rog43, Lawson Law90, Dowding Dow98, and Morison Mor99] all show pages set in many different fonts.

Legibility

One of the principle requirements on the typography of a document is that the document is legible. Legibility means that the document is designed to be easily read under a certain set of circumstances. The criteria for legibility on a poster that is placed on the side of a bus, for example, are different from those that apply to a book to be read while sitting in an easy chair. Essentially, the viewer should be able to read the document with no physical strain caused by the appearance, but the contents, of course, may lead to anything ranging from acute mental strain to extreme boredom.

Type faces and the layout of the typeblock must be chosen to optimise between legibility and 'artistic' presentation. The design of the document should be almost invisible, giving full compliments to the author's communication. However, if you are a master, like Hermann Zapf Zap00, you can break the rules.

Type faces

The first European letter forms that have survived are Greek inscriptions carved into stone. These were freehand carvings with thin strokes. In time, the lettering became thicker and serifs started to appear. The Romans picked up on this later style of letter form. In carving inscriptions, they first wrote the inscription on the stone using a broad, flat brush. This naturally led to serifs and differing thicknesses of the letter strokes, depending on the angle of the stroke with respect to the movement and orientation of the brush.

Between the Roman times and Gutenberg there were many changes and experiments in European letterforms. The scribes used different scripts for titles, subheads, continuous text, illuminated initial letters, and so on. In time, two families of letterforms evolved, called majuscules and miniscules. The former were larger and more formal, while the latter were smaller and less formal. We now call these two divisions upper case and lower case. The upper case derives from Roman times, while the lower case acquired its fundamental form during the reign of the Holy Roman Emperor Charlemagne a thousand years later. A further division also appeared, between black letter (what is commonly referred to as Gothic or Old English) type and the roman type.

These types were all upright. Italic letterforms were cut in Italy in the early sixteenth century, as a more cursive style. Initially these were lower case only, used in conjunction with upper case roman. By the end of the century, sloped roman capitals were also in use with italic.

The late nineteenth century saw the appearance again of sans-serif typefaces.
Looking carefully at seriffed and sans-serif fonts it is apparent that the serifs have three main functions:

1. They help to keep letters apart.
2. At the same time, they help to keep letters in a word together. This helps with legibility as research has shown that we tend to recognize words by the shape of the word rather than by individual characters.
3. They help to differentiate between individual but similar letters.

Long experience has shown that a seriffed font is easier to read ${ }^{5}$ than a sans-serif font, particularly if part of the text is obscured. You can try an experiment yourself to verify this. Try writing a phrase, once using a sans-serif font and then with a serifed font. Cover up the top halves of the two phrases and try to make out what they say. Then repeat this, except this time cover up the bottom halves of the phrase. Which is easier to read? Here are some example characters, firstly in san-serif:

aclmnpqo

and then in roman:

aclmnpqo

Sans-serif fonts often require context to decipher the word. For example [McL80], seeing this in isolation

[^10]does it stand for 'Ill', 'one hundred and eleven', 'three', or something completely different like a dingbat or a set of cricket stumps?

There are three generally agreed legibility principles for setting text for continuous reading.

1. Sans-serif type is intrinsically less legible than seriffed type Whe95.

We have already seen that this is the case - there is more variety among seriffed letters than among sans-serif letters. Further, serifs perform other functions as well, such as binding letters together within a word.
This is not to say that a sans-serif letterform is always more illegible than a roman one. A poor seriffed form can be much more illegible than a well used good sans-serif. In general, there is an illegibility factor associated with sans-serif that must be borne in mind; for general continuous reading, a good seriffed form is more likely to be easy on the eye than a good sans form.
2. Well designed upper and lower case roman type is easier to read than any of its variants.

This is a guiding principle with many exceptions. Among the variants can be considered to be italic and bold types. These have usually been designed for a special purpose, like emphasing certain pieces of text, rather than for general legibility. Some italic types, though, are as legible as their roman counterparts. In the seventeenth century many books were set entirely in italic, but we have become accustomed to the roman type.
3. Words should be set closer together than the space between lines.

All text is a mixture of ink and white space. The eye, when reading, tends to jump over the white spaces. Given a choice between two spaces, it will tend to jump over the smaller of the two. If the word spacing is greater than the line spacing, then you can find yourself skipping from one line to the next before finishing the first one.
Further, if the lines are too long, then when the eye jumps back from the end of one line to the start of the next, it may have difficulty in picking up the correct one.
Text lines are justified by altering the inter-word spacing, and possibly by hyphenating the last word on the line if the spacing would be too bad otherwise. Sans-serif fonts often look best if set ragged right, as this will keep the inter-word spacing constant. Text set in narrow columns also often looks best when set ragged right.

Seriffed versus sans-seriffed fonts

As noted earlier there seems to be a permanent debate over the use of seriffed and sans fonts. You will have to make up your own mind as to what is best for any particular work, but here are some general comments from some of the literature on the subject.

Bohle Boh90 notes: Readers prefer a roman typeface for body type because they are most used to seeing that face Reh72]. Roman type may well also be more readable than sans serif faces because the serifs help connect the letters to form the word shape when we read Reh72.

Craig Cra92 says: You will find that the serifs on a typeface facilitate the horizontal flow necessary to comfortable reading.

Degani Deg92 in a study of pilots reading checklists in emergency cockpit situations decided that sans serif faces were better than serif faces.

Schriver Sch97] notes: Serif and sans serif typefaces are likely to be equally preferred by readers HR83, Tin63 and read equally quickly Gou87, HR83, Zac69. Serif faces may be easier to read in continuous text than sans serif faces Bur59, HK75, RAE71, Whe95.

Wheildon Whe95 did a series of studies with around 250 readers in Sydney, Australia, asking them to rate serif and sans fonts in a variety of uses. Among the many results he reported:

- More than five times as many readers are likely to show good comprehension when a serif body type is used instead of a sans serif body type.
- The top half of [upper case] letters is more recognizable than the bottom half.
- There is little difference in legibility between headlines [section titles] set in serif and sans serif typefaces, or between roman and italic.
- Headlines set in capital letters are significantly less legible than those set in lower case.

The consensus, such as it is, seems to lean towards serifed typefaces for continuous reading, but for titling the choice is wide open.

Widows and orphans

Inconvenient page breaks can also cause a hiatus in the reader's perusal of a work. These happen when a page break occurs near the start or end of a paragraph.

A widow is where the last line of a paragraph is the first line on the page. The term is sometimes also used to refer to when the last word in a paragraph is on a line by itself. A widow looks forlorn. As Robert Bringhurst said, 'A widow has a past but no future'. Typographically, widows should be avoided. Especially to be avoided are widows that are the only line on a page, for example at the end of a chapter. Five lines on the last page of a chapter is a reasonable minimum.

An orphan is not nearly so troubling to typographers as a widow. An orphan is where the first one or two lines of a paragraph are at the bottom of a page. Bringhurt's memory trick for orphans is, 'An orphan has a future but no past'.

Paragraphs and versals

Early books did not have paragraphs as we know them nowadays; the text was written continuously, except for a break at a major division like the start of a new book in a bible. Instead the scribes used a symbol like $\mathbb{\top}$ (the pilcrow) to mark the beginning of paragraphs. This symbol is derived from the Greek Π, for parágraphos. Mind you, they often did not
use any punctuation at all and were sparing in their use of uppercase letters, so you might have seen something like this ${ }^{6}$
usque ब te canit adcelebratque polus rex gazifier hymnis ब transzephyrique globum scandunt tua facta per axem

Nowadays paragraphs are ended by stopping the line of text at the end of the paragraph, and then starting the next paragraph on a new line. The question then becomes: how do you indicate a new paragraph when the last line of the previous paragraph fills up the measure? There are two solutions, which unfortunately you sometimes see combined. Either indent the beginning of the first line of each paragraph, or put additional vertical space between the last and first lines of paragraphs.

The traditional technique, which has served well for centuries, is to indent the first line of a paragraph. The indentation need not be large, about an em will be enough, but more will be required if the typeblock is wide.

The other method is used mainly in business letters and is a recent invention. The first lines of paragraphs are not indented and typically one blank line is left between paragraphs. This may perhaps be acceptable when using a typewriter, but seems to have no real justification aesthetically. There is also the problem when a paragraph both ends with a full line and ends a page. As the next paragraph then starts at the top of the next page, the blank line separating the two paragraphs has effectively dissappeared, thus leaving the reader in a possible state of uncertainty as to whether the paragraph continues across the page break or not.

If the paragraph is the first one after a heading, then there is no need to indicate that it is a new paragraph - it is obvious from its position. So, the first paragraph after a heading should not be indented. In some novels only chapters are headed yet each chapter is broken into sections by putting additional vertical blank space between the sections. Like nonindented paragraphs, this can cause problems where a section division coincides with a page break. In this case, typographers sometimes use a decoration to separate sections (for example, a short centered row of a few asterisks). OME TYPOGRAPHERS like to start the first paragraph in a chapter with a versal. A versal is a large initial letter, either raised or dropped. This comes from the scribal tradition of illuminating the first letter of a manuscript. The versal may be raised or dropped, as already noted, or it may be placed in the margin, or otherwise treated in a special manner.
OME VERSALS, especially dropped versals, are very difficult to typeset correctly. Many attempts of this kind are abject failures, so be warned. For example, compare the dropped versals at the start of these first two paragraphs. They are both of the same letter and font, yet the first one is horrible compared to the one starting this paragraph.
$I_{\text {T is EASIER to start a paragraph with a raised capital than one that is dropped. A raised }}$ versal should only be used where there is naturally some vertical space above it. As you can see, extra spacing has had to be inserted before this paragraph to accomodate the versal. There are still problems with typesetting a raised versal but as these tend to be subtler than with a dropped versal, readers are less likely to notice problems.

[^11]Typically, small caps are used for a little while following a versal to provide a transition between the large versal font and the normal body font. These should not continue throughout the first line as this tends to divorce it from the remainder of the paragraph.
Another way of starting a paragraph is to use small caps for the first few words. The font difference highlights the start of the paragraph but in a much quieter manner than a versal does. Using normal sized upper-case instead of the small caps is too much of a contrast with the lower-case.

Footnotes

Footnotes are considered to be part of the typeblock. They are typeset in the space allocated for the typeblock, in contrast to footers which are typeset below the typeblock.

Footnotes are normally set in the same type style as the typeblock. That is, if an upright seriffed font is used for the typeblock, it is also used for the footnote. The type size is smaller to distinguish the note from the body text and often the leading in the footnote is also reduced from that in the main text body. The bottom footnote line should be at the same height as the bottom line of the typeblock. This usually requires some adjustment of the vertical space before the footnotes.

A vertical blank space is often used to set off the footnotes from the main text, and sometimes a short horizontal line is also used as demarcation.

2.4 Folios

The word folio is a homonym. It can mean a leaf (two back-to-back pages) in a book, the size of a book or a book of folded sheets (as in Shakespeare's first folio), or the printed page number in a book. Here I use folio in this last sense.

Documents should have folios, at a minimum to help the reader know where he is. Occasionally books have their folios placed near the spine but this positioning is unhelpful for navigation. The more usual positions are either centered with respect to the typeblock or aligned with the outside of the typeblock, and sometimes even in the outside margin. The folios can be either at the top or bottom of the page but at least on pages with chapter openings are normally placed at the bottom of the page so that they do not distract from the title text.

Every page in a document, except perhaps the title and half title pages in a book, should be numbered, even if the page does not have a folio. In books, the folios for the front material are often in roman numerals. The main and rear matter folios are arabic numerals, with the sequence starting from 1 after the front matter. In certain technical documents, folios may be in the form of chapter number and page number, with the page number starting from 1 in each new chapter. Other folio schemes are possible but unusual.

Folios should be placed harmoniously with respect to the typeblock and page margins. The font used for the folios need not be the same as that for the typeblock but must at least be complementary and non-intrusive.

2.5 Headers and footers

Headers and footers are repetitive material that is placed at either the head or the foot of the page. Typically, folios are headers or footers, but not always as sometimes they are placed in the margin at or below the first line in the typeblock.

From now on I will not distinguish between headers and footers and just use the word header. Sometimes the header is purely decorative (apart from a folio) like a horizontal line or some other non-textual marking. Normally they have a functional use in helping the reader locate himself in the document.

The most ubiquitous header is one which gives the title of the document. If this is the only header, then I consider this to be decorative rather than functional. As a reader I know what document I am reading and do not need to be reminded every time I turn a page. More useful are headers that identify the current part of the document, like a chapter title or number. When you put the document down and pick it up later to continue reading, these help you find your place, or if you need to refer back to a previous chapter for some reason, then it is a boon to have a chapter heading on each spread. The minimally functional headers are where the document title is on one page and the chapter heading is on the facing page. In more technical documents it may be more useful to have headers of chapter and section titles on alternate pages.

Occasionally both headers and footers are used, in which case one normally has constant text, like a copyright notice. I have the feeling that using the latter is only functional for the publishers of the document when they fear photocopying or some such.

The header text is usually aligned with the spine side of the typeblock, but may be centered on top of the typeblock. In any event, it should not interfere with the folio. The type style need not be the same as the style for the typeblock. For example, headers could be set in italic or small caps, which must blend with the style used for the typeblock.

Chapter 3

Picky points

3.1 Introduction

The main elements of good typography are legibility and page color. This chapter discusses some of the smaller points related to these topics.

3.2 Word and line spacing

Research has shown that the competent reader recognises words by their overall shape rather than by stringing together the individual letters forming the words. A surprisingly narrow gap between words is sufficient for most to distinguish the word boundaries.

Most typographers state that the space between words in continuous text should be about the width of the letter ' i '. Any closer and the words run together and too far apart the page looks speckled with white spots and the eye finds it difficult to move along the line rather than jumping to the next word in the next line. Figure 3.1 illustrates different values of interword spacing.

In keeping with avoiding white spots, many typographers do not recommend extra spacing after punctuation, although this does depend partly on a country's typographic history and partly on the individual. I always found typewritten texts with double spaces after the end of sentences a particular eyesore. However, with typeset texts any extra spacing is usually not as large as that.

The spacing between lines of text should be greater than the interword spacing, otherwise there is a tendency for the eye to skip to the next line instead of the next word. Figure 3.2 illustrates some text typeset with different line spacings. The normal interword spacing is used in the samples.

3.3 Abbreviations and acronyms

The English style with abbreviations is to put a full stop (period) after the abbreviation, unless the abbreviation ends with the same letter as the full word. Thus, it is Mr for Mister, Dr for Doctor, but Prof. for Professor. No extra spacing should be used after the full stop, even if extra spacing is normally used after punctuation.

The following paragraph is typeset with double the normal interword spacing for this font.

Most typographers state that the space between words in continuous text should be about the width of the letter ' i '. Any closer and the words run together and too far apart the page looks speckled with white spots and the eye finds it difficult to move along the line rather than jumping to the next word in the next line. Extra spacing after punctuation is not necessary.

The following paragraph is typeset with the normal interword spacing for this font.

Most typographers state that the space between words in continuous text should be about the width of the letter 'i'. Any closer and the words run together and too far apart the page looks speckled with white spots and the eye finds it difficult to move along the line rather than jumping to the next word in the next line. Extra spacing after punctuation is not necessary.

The interword spacing in the following paragraph is the width of the letter ' i '.
Most typographers state that the space between words in continuous text should be about the width of the letter 'i'. Any closer and the words run together and too far apart the page looks speckled with white spots and the eye finds it difficult to move along the line rather than jumping to the next word in the next line. Extra spacing after punctuation is not necessary.

Figure 3.1: Interword spacings

This paragraph is set solid - the interline spacing is the same as the font size. The normal interword spacing is used. The spacing between lines of text should be greater than the interword spacing, otherwise there is a tendency for the eye to skip to the next line instead of the next word.

This paragraph is set with the normal interline spacing for the font. The normal interword spacing is used. The spacing between lines of text should be greater than the interword spacing, otherwise there is a tendency for the eye to skip to the next line instead of the next word.

This paragraph is set with the interline spacing 20% greater than is normal for the font. The normal interword spacing is used. The spacing between lines of text should be greater than the interword spacing, otherwise there is a tendency for the eye to skip to the next line instead of the next word.

Figure 3.2: Interline spacings

Acroynms are typeset in uppercase but the question is, which uppercase? The simple way is to use the uppercase of the normal font, like UNICEF, but if there are too many acronyms scattered around the speckled effect starts to intrude. If the font family has one, then small caps can be used, giving UNICEF. If small caps are not available, or appear undesireable, then a smaller size of the normal uppercase can be used, such as UNICEF or UNICEF; some experimentation may be required to select the appropriate size.

3.4 Dashes and ellipses

Most fonts provide at least three lengths of dashes. The shortest is the hyphen (-), then there is the en-dash (-) which is approximately the width of the letter ' n ', and the largest is the em-dash (-) which is approximately twice the length of an en-dash. An expert font may provide more.

Unsurprisingly, the hyphen is used for hyphenation, such as in em-dash, or at the end of a line where a word had to be broken.

The en-dash is normally used between numerals to indicate a range. For example a reference may refer to pages $21-27$ in some journal or book. There is no space surrounding the en-dash when used in this manner.

The em-dash, or the en-dash, is used as punctuation - often when making a side remark - as a phrase separator. When en-dashes are used as punctuation it is normal to put spaces around them but the question of spaces around an em-dash appears to be the subject of some contention. Roughly half the participants in any discussion advocate spaces while the other half view them as anathema. If you do use em-dashes be sure to be consistent in your use, or otherwise, of spaces.

Ellipses are those three, or is it four, dots indicating something is missing or continues somewhat indefinitely. In the middle of a sentence, or clause or ... they have a space on either side. At the end of a sentence the English style is to have no spaces and include the full stop, making four dots in all, like so....

Dashes are also used to indicate missing characters or a word. Missing characters in the middle of a word are indicated by a 2 em -dash (a dash that is twice as long as an em-dash), as in:
snafu, (U.S. slang) n. chaos. - adj. chaotic. $[$ situation normal -all $f-\mathrm{d}$
u p.]
A 3em-dash is used to indicate a missing word. When I lived in Maryland my local small town newspaper was the Frederick Post. The following is from an obituary I happened to read; I have hidden the name to protect the innocent.

Although he had spent the last 92 years of his life here, Mr. -_ was not a Fredericktonian.

3.5 Punctuation

Quotation marks

Quotation marks surrounding speech and associated punctuation are a fruitful source of confusion.
'There's glory for you!'
'I don't know what you mean by "glory"', Alice said.
Humpty Dumpty smiled contemptuously. 'Of course you don't - till I tell you. I meant "there's a nice knock-down argument for you"!'
'But "glory" doesn't mean "a nice knock-down argument"', Alice objected.
'When I use a word', Humpty Dumpty said, in a rather scornful tone, 'it means just what I choose it to mean - neither more nor less'.

[^12]Figure 3.3: Quotation marks: top English, bottom American

The American style is to use double quotes at the start(") and end (") of spoken words. If the speaker quotes in the speech then single quote marks (' and') are used to delineate the internal quotation.

The English practice is exactly the opposite. Main speech is delineated by single quotes and internal quotations by double quotes. In any event, if single and double quotes are adjacent they should be separated by a thin space in order to distinguish one from the other - a full interword space is too wide.

As there are likely to be few internal quotations it seems to me that the English practice produces a less spotty appearance than the American. Figure 3.3 shows the same text typeset in both the English and American styles. The example is from Lewis Carroll's Through the Looking Glass and what Alice Found There and has an unusually large number of internal quotations.

Where to put punctuation marks with quotes is vexatious. Again the English and American practice tends to differ. The American tendency is to put commas and periods inside the closing quote mark and colons and semicolons after the mark. English editors prefer to put punctuation after the mark. In either case, it is difficult to know exactly what to do. I get the impression that for every example of the 'correct' form there is a counter-example. Some try and avoid the problem altogether by putting the lower marks, like commas or periods, directly below the quotation mark but that may cause problems if the resulting constructs look like question or exclamation marks. In Figure 3.3 I have tried to use the English and American punctuation styles in the respective examples but it is likely that there are misplacements in both. I think it's basically a question of doing what you think best conveys the sense, provided there is consistency.

Footnote marks

Where to put a footnote marker may be another vexed question in spite of the general principal being easy to state: The mark goes immediately after the text element that the note refers to.

There is no doubt what this means ${ }^{1}$ when the text element is a word in the middle of other words. Doubt raises its head when the reference is to a phrase, like this one ${ }^{2}$, which is set off within commas, or when the note refers to a complete sentence. ${ }^{3}$

Like punctuation and quotation marks, should a footnote mark come before or after the punctuation mark at the end of a phrase or a sentence? I have shown both positions ${ }^{4}$ in the previous paragraph. The general rule that I have deduced is that the mark comes after the punctuation, but there are always those who like to prove a rule.

There are other marks that may be associated with a word, like (registered) trademarks. These may produce ugly gaps. Sometimes these cannot be avoided but it may be possible to change the text to minimise the hiccup. There is an example of this on page xxii I tried various schemes in identifying 'PostScript' as being a registered trademark of Adobe Systems Incorporated. Among the discarded trials were:
... languages like PostScript ${ }^{\text {TM }}$, presumably ...
... languages like PostScript ${ }^{\circledR}$, presumably ...
... like the PostScript ${ }^{\circledR}$ language, presumably ...
My final solution was to note the registered trademark information in a footnote:
... languages, like PostScript ${ }^{5}$, presumably ...
In this case I decided that the footnote was really tied to the word 'PostScript', taking the place of the registered symbol, so I put the footnote mark before the comma rather than after it.

Font changes

Sometimes a word or two may be set in a different font from the surrounding text, such as when emphasizing a word by setting it in an italic font. If the word is followed by a punctuation mark the normal practice is to set the mark using the new font instead of the normal font. In some cases the font used for the punctuation may not be particularly noticeable but sometimes it may be.

The frontmatter contains two definitions of the word memoir, which is typeset using a bold font. The definitions thus commence like
memoir, n. ...
instead of
memoir, n. ...

[^13]
3.6 Narrow measures

Typesetting in a narrow column is difficult, especially if you are trying to make the text flush left and right. As the lines get shorter it becomes more and more difficult to fit the words in without an excessive amount of interword spacing or word breaking at the ends of lines. In the limit, of course, there will not be even enough room to put a syllable on a line.

The best recourse in situations like this is to forget justification and typeset ragged right. Ragged right looks far better than justified text with lots of holes in it. The question then is, to hyphenate or not to hyphenate?

With no hyphenation there is likely to be increased raggedness at the line ends when compared with permitting some hyphenation. Hyphenation can be used to reduce the raggedness but somehow short lines ending with a hyphen may look a bit odd. This is where you have to exercise your judgement and design skills.

Indexes are often typeset in double, or even triple or quadruple columns, as each entry is typically short. Also, indexes are typically consulted for a particular entry rather than being read as continuous text. To help the eye, page numbers are normally typeset immediately after the the name of the indexed topic, so indexes tend to be naturally ragged right as a matter of reader convenience.

Talking of hyphenation, each language has its own rules for allowable hyphenation points. As you might now have come to suspect, English and American rules are different even though the language is nominally the same. Broadly speaking, American English hyphenation points are typically based on the sound of the word, so the acceptable locations are between syllables. In British English the hyphenation points tend to be related to the etymology of the word, so there may be different locations depending on whether the word came from the Greek or the Latin. If you are not sure how a particular word should be hyphenated, look it up in a dictionary that indicates the potential break points.

3.7 Emphasis

Underlining should emphatically not be used to emphasise something in a typeset document. This is a hangover from the days when manuscripts were typewritten and there was little that could be done. The other way of emphasising something was to put extra space between the characters of the word being emphasised, as has been done twice in this sentence. As an aside, for me at least, that extra spacing produces the illusion that the characters are slightly larger than normal, which is not the case.

With the range of fonts and sizes available when typesetting there are other methods for emphasis, although German typographers have used letterspacing for emphasis with the fraktur and other similar font types.

There are basically three aproaches: change the size of the font; change the weight of the font; or most usually, change the shape of the font. There is a creative tension when trying to emphasise something - there is the need to show the reader the emphasised element, but there is also the desire not to interrupt the general flow of the text. Out of the three basic options, changing the shape seems to be a reasonable compromise between the need and the desire.

3.8 Captions and legends

I am not entirely sure what is the difference between a caption and a legend as both terms refer to the title of an illustration or table. However, legend may also be used to refer to some explanatory material within an illustration, such as the explanation of the symbols used on a map.

In any event, captions and legends are usually typeset in a font that is smaller than the main text font, and which may also be different from the main font. For example, if the main font is roman and a sans font is used for chapter titles, then it could be appropriate to use a small size of the sans font for captions as well.

The caption for a table is normally placed above the table while captions for illustrations are placed below.

3.9 Tables

A table is text or numbers arranged in columns, and nearly always with a 'legend' above each column describing the meaning of the entries in the column. The legends and the column entries are separated from each other, perhaps by some vertical space but more often by a horizontal line.

In general typographers dislike vertical lines in a table, which may be likely to be used to separate the columns. I'm not sure why this is. There is an obvious explanation when hand setting the individual characters as although it would be easy to set horizontal rules it would be very difficult to get all the pieces of type with the bits of the vertical rules aligned properly - the eye is very sensitive to jags in what is meant to be a straight line. In the days of digital typography the alignment problem has gone away, so perhaps the antipathy to vertical lines is a tradition from earlier days.

If you want to use vertical lines, just be aware that not everybody may appreciate your effort.

Chapter 4

Electronic books

4.1 Introduction

For want of a better term I am calling electronic books, or Ebooks, those documents intended to be read on a computer screen. The vast bulk of Ebooks are in the form of email but I'm more interested here in publications that are akin to hardcopy reports and books that require more time than a few minutes to read.

This brief chapter includes some suggestions for the layout of Ebooks, based on my experience with such works. Not considered are internal navigation aids (e.g., hyperlinks) within and between Ebooks, nor HTML documents where the visual appearance is meant to set by the viewing software and not by the publisher.

4.2 Observations

Unlike real books which have been available for hundreds of years there is virtually no experience to act as a guide in suggesting how Ebooks should appear.

The publication medium is obviously very different - a TV-style screen with limited resolution and pretty much fixed in position versus foldable and markable paper held where the reader finds it best. These differences lead to the following suggestions.

A book can be held at whatever distance is comfortable for reading, even when standing up. The computer user is normally either sitting in a chair with the monitor on a desk or table, or is trying to read from a laptop, which may be lighter but nobody would want to hold one for any length of time. To try and alleviate the physical constraints on the Ebook reader the font size should be larger than normal for a similar printed book. This will provide a wider viewing range. A larger font will also tend to increase the sharpness of the print as more pixels will be available for displaying each character.

I find it extremely annoying if I have to keep scrolling up and down to read a page. Each page should fit within the screen, which means that Ebook pages will be shorter than traditional pages. A suggested size for an Ebook page, in round numbers, is about 9 by 6 inches Ado01 or 23 by 15 centimetres overall.

The font size should not be less than 12pt. The font may have to be more robust than you would normally use for printing, as fine hairlines or small serifs will not display well unless on a high resolution screen.

The page design for printed books is based on a double spread. For Ebooks the design should be based on a single page. The typeblock must be centered on the page otherwise it gets tiring, not to mention aggravating, if your eyes have to flip from side to side when moving from one page to the next. Likewise any header and the top of the typeblock must be at a constant height on the screen. A constant position for the bottom of the text is not nearly so critical.

It is more difficult with an Ebook than with a paper book to flip through it to find a particular place. Navigation aids - headers and footers - are therefor more critical. Each page should have both a chapter (perhaps also a section) header title and a page number. Note that I'm not considering HTML publications.

Many viewers for Ebooks let you jump to a particular page. The page numbers that they use, though, are often based on the sequence number from the first page, not the displayed folio. In such cases it can be helpful to arrange for a continuous sequence of page numbers, even if the folios are printed using different styles. For example, if the front matter uses roman numerals and the main matter arabic numerals and the last page of the frontmatter is page xi, then make the first page of the main matter page 12 .

I see no point in Ebooks having any blank pages - effectively the concept of recto and verso pages is irrelevant.

Some printed books have illustrations that are tipped in, and the tipped in pages are sometimes excluded from the pagination. In an Ebook the illustrations have to be 'electronically tipped in' in some fashion, either by including the electronic source of the illustrations or by providing some navigation link to them. Especially in the former case, the tipped in elements should be included in the pagination.

Don't forget that a significant percentage of the population is color-blind. The most common form is a reduced ability to distinguish between red and green; for example some shades of pink may be perceived as being a shade of blue, or lemons, oranges and limes may all appear to be the same color. Along with color-blindness there may be a reduced capacity to remember colors.

I have seen Ebooks where color has been liberally used to indicate, say, different revisions of the text or different sources for the data in a graph. Unless the colors used are really distinctive 10% or more of the potential readership will be lost or confused. Further, Ebooks may be printed for reading off-line and if a non-color printer is used then any colors will appear as shades of grey; these must be such that they are both readily distinguishable and legible. Yellow on white is almost as difficult to read as off-white on white or navy blue on black, all of which I have seen on web sites but rarely after I have tried to print the page.

Part II

Practice

Chapter 5

Starting off

This chapter uses the headings pagestyle; pagestyles are described in $\S 14$
As usual, the memoir class is called by \documentclass [〈options \rangle \{memoir\}. The $\langle o p t i o n s\rangle$ include being able to select a paper size from among a range of sizes, selecting a type size, selecting the kind of manuscript, and some related specifically to the typesetting of mathematics.

5.1 Stock paper size options

The stock size is the size of a single sheet of the paper you expect to put through the printer. There are a range of stock paper sizes from which to make a selection. These include:
a3paper for a stock size of 420×297 millimeters
a4paper for a stock size of 297×210 millimeters
a5paper for a stock size of 210×148 millimeters
a6paper for a stock size of 148×105 millimeters
b3paper for a stock size of 500×353 millimeters
b4paper for a stock size of 353×250 millimeters
b5paper for a stock size of 250×176 millimeters
b6paper for a stock size of 176×125 millimeters
letterpaper for a stock size of 11×8.5 inches
legalpaper for a stock size of 14×8.5 inches
executivepaper for a stock size of 10.5×7.25 inches
ebook for a stock size of 6×9 inches, principally for 'electronic books' intended to be displayed on a computer monitor
landscape to interchange the height and width of the stock.
These options, except for landscape, are mutually exclusive. The default stock paper size is letterpaper.

5.2 Type size options

The class offers a wider range of type sizes than usual. These are:
9pt for 9pt type
10pt for 10pt type
11pt for 11pt type
12pt for 12 t type
14 pt for 14 pt type
17 pt for 17 pt type
These options are mutually exclusive. The default type size is 10 pt .

5.3 Printing options

This group of options includes:
twoside for when the document will be published with printing on both sides of the paper.
oneside for when the document will be published with only one side of each sheet being printed on.
The twoside and oneside options are mutually exclusive.
onecolumn only one column of text on a page.
twocolumn two equal width columns of text on a page.
The onecolumn and twocolumn options are mutually exclusive.
openright each chapter will start on a recto page.
openleft each chapter will start on a verso page.
openany a chapter may start on either a recto or verso page.
The openright, openleft and openany options are mutually exclusive.
final for camera-ready copy of your labours.
draft this marks overfull lines with black bars and enables some change marking to be shown. There may be other effects as well, particularly if some packages are used.
ms this tries to make the document look as though it was prepared on a typewriter. Some publishers prefer to receive poor looking submissions.
The final, draft and ms options are mutually exclusive.
showtrims this option prints marks at the corners of the the sheet so that you can see where the stock must be trimmed to produce the final page size.

The defaults among the printing options are twoside, onecolumn, openright, and final.

5.4 Other options

The remaining options are:
leqno equations will be numbered at the left (the default is to number them at the right).
fleqn displayed math environments will be indented an amount \mathindent from the left margin (the default is to center the environments).
openbib each part of a bibliography entry will start on a new line, with second and succeding lines indented by \bibindent (the default is for an entry to run continuously with no indentations).
article typesetting simulates the article class, but the \chapter command is not disabled. Chapters do not start a new page and chapter headings are typeset like a section heading. The numbering of figures, etc., is continuous and not per chapter. However, a \part command still puts its heading on a page by itself.
oldfontcommands makes the old, deprecated LaTeX version 2.09 font commands available. Warning messages will be produced whenever an old font command is encountered.

None of these options are defaulted.

5.5 Remarks

Calling the class with no options is equivalent to:
\documentclass[letterpaper,10pt,twoside, onecolumn,openright,final] \{memoir\}
The source file for this manual starts
\documentclass[letterpaper, 10pt] \{memoir\}
which is overkill as both letterpaper and 10pt are among the default options.
Actual typesetting only occurs within the document environment. The region of the file between the \documentclass command and the start of the document environment is called the preamble. This is where you ask for external packages and define you own macros if you feel so inclined.

\flushbottom \raggedbottom

When the twoside or twocolumn option is selected then typesetting is done with \flushbottom, otherwise it is done with \raggedbottom.

When \raggedbottom is in effect LaTeX makes little attempt to keep a constant height for the typeblock; pages may run short.

When \flushbottom is in effect LaTeX ensures that the typeblock on each page is a constant height, except when a page break is deliberately introduced when the page might run short. In order to maintain a constant height it may stretch or shrink some vertical spaces (e.g., between paragraphs, around headings or around floats or other inserts). This may have a deleterious affect on the color of some pages. Serendipitously this has happened on page 9 where there is additional space between the paragraphs (caused by the next sectional division having to be put at the top of the next page). You may wish to compare that page with the following one to see the difference in the colors.

I could have made the page run short by inserting \raggedbottom at an appropriate place, followed later by a \backslash flushbottom.

If you get too many strung out pages with \flushbottom you may want to put \raggedbottom in the preamble.

If you use the ebook option you may well also want to use the 12 pt and oneside options.

Chapter 6

Laying out the page

This chapter is typeset with the ruled pagestyle.

6.1 Introduction

The class provides a default page layout, in which the page size is the same as the stock size and the typeblock is roughly in the middle of the page. This chapter describes the commands provided by the class to help you produce your own page layout if the default is inappropriate.

The pages of a book carry the text which is intended to educate, entertain and/or amuse the reader. The page must be designed to serve the purposes of the author and to ease the reader's task in assimilating the author's ideas. A good page design is one which the general reader does not notice. If the reader is constantly noticing the page layout, even unconsciously, it distracts from the purpose of the book. It is not the job of the designer to shout, or even to murmur, 'look at my work'.

There are three main parts to a page: the page itself, the typeblock, and the margins separating the typeblock from the edges of the page. Of slightly lesser importance are the headers and footers, and possibly marginal notes. The art of page design is obtaining a harmonious balance or rhythm between all these.

Although the form is different, the facilities described in this chapter are similar to those provided by the geometry package Ume99.

6.2 Stock material

Printing is the act of laying symbols onto a piece of stock material. Some print on T shirts by a process called silk screening, where the shapes of the symbols are made in a screen and then fluid is squeezed through the screen onto the stock material - in this case the fabric of the T shirt. Whether or not this is of general interest it is not the sort of printing or stock material that is usually used in book production. Books, except for the very particular, are printed on paper.

In the desktop publishing world the stock paper is usually one from a range of standard sizes. In the USA it is typically letterpaper (11 by 8.5 inches) and in the rest of the world A4 paper (297 by 210 mm), with one page per piece of stock. In commercial printing the
stock material is much larger with several pages being printed on each stock piece; the stock is then folded, cut and trimmed to form the final pages for binding. For our purposes we only consider desktop publishing.

6.3 The page

We only consider one page per piece of stock.
The parameters used by LaTeX itself to define the page layout are illustrated in Figure 6.1. LaTeX does not actually care about the physical size of a page - it assumes that, with respect to the top lefthand corner, the sheet of paper to be printed is infinitely wide and infinitely long. If you happen to have a typeblock that is too wide or too long for the sheet, LaTeX will merrily position text outside the physical boundaries.

The LaTeX parameters are often not particularly convenient if, say, the top of the text must be a certain distance below the top of the page and the foredge margin must be twice the spine margin. It is obviously possible to calculate the necessary values for the parameters, but it is not a pleasurable task.

The class provides various means of specifying the page layout, which are hopefully more convenient to use than the standard ones. Various adjustable parameters are used that define the stock size, page size, and so on. These differ in some respects from the parameters in the standard classes. Figure 6.2 shows the stock for a recto page, with a page layout, illustrating the main layout parameters. These may be changed individually by \setlength or by using the commands described below.

In the code for the standard classes it says:
'The variables \paperwidth and \paperheight should reflect the physical paper size after trimming. For desk printer output this is usually the real paper size since there is no post-processing. Classes for real book production will probably add other paper sizes and additionally the production of crop marks for trimming.'

This class has introduced the additional lengths \stockwidth and \stockheight to denote the physical paper size before trimming.

The first step in designing the page layout is to decide on the page size and then pick an appropriate stock size. Selecting a standard stock size will be cheaper than having to order specially sized stock material.

```
\setstocksize{\langleheight\rangle}{\langlewidth\rangle}
```

\stockheight \stockwidth

The class options provide for some common stock sizes. If you have some other size that you want to use the command \setstocksize can be used to specify that the stock size is $\langle h e i g h t\rangle$ by $\langle w i d t h\rangle$. For example the following specifies a stock of 9 by 4 inches:
\setstocksize\{9in\}\{4in\}
The size of the page must be no larger than the stock but may be smaller which means that after printing the stock must be trimmed down to the size of the page. The page may be positioned anywhere within the bounds of the stock.

Page layout should be conceived in terms of a spread; when you open a book in the middle what you see is a spread - a verso page on the left and a recto page on the right

The circle is at 1 inch from the top and left of the page. Dashed lines represent (\backslash hoffset +1 inch) and ($\backslash v o f f s e t+1$ inch) from the top and left of the page.

Figure 6.1: LaTeX page layout parameters for a recto page

Dashed lines represent the actual page size after trimming the stock.

Figure 6.2: The main memoir class page layout parameters for a recto page
with the spine between them. Most books when closed are taller than they are wide; this makes them easier to hold when open for reading. A squarish page when opened out into a wide spread makes for discomfort unless the book is supported on a table.

```
\settrimmedsize{\langleheight\rangle}{\langlewidth\rangle}{\langle ratio\rangle}
\paperheight \paperwidth
```

The command \settrimmedsize can be used to specify the height and width of the page (after any trimming). Initially the page size is made the same as the stock size, as set by the paper size option. The \langle ratio \rangle argument is the amount by which the $\langle h e i g h t\rangle$ or the〈width> must be multiplied by to give the width or the height. Only two out of the three possible arguments must be given values with the other (unvalued) argument given as $*$ (an asterisk). The lengths \paperheight and \paperwidth are calculated according to the given arguments. That is, the command enables the \paperheight and \paperwidth to be specified directly or as one being in a given ratio to the other.

If you have used \setstocksize to redefine the stock, then to get the same page size, do:
\settrimmedsize\{\stockheight\}\{\stockwidth\}\{*\}
or for the page to be 90% of the size of the stock:
\settrimmedsize\{0.9\stockheight\}\{0.9\stockwidth\}\{*\}
The following are three different ways of defining an 8 by 5 inch page.
\settrimmedsize\{8in\}\{5in\}\{*\}
\settrimmedsize\{8in\}\{*\}\{0.625\} $\% 5=0.625$ times 8
\backslash settrimmedsize\{*\}\{5in\}\{1.6\} $\% 8=1.6$ times 5
If you look at a well bound hardback book you can see that the sheets are folded so that they are continuous at the spine, where they are sewn together into the binding. The top of the pages should be smooth so that when the book is upright on a bookshelf dust has a harder job seeping between the pages than if the top was all raggedy. Thus, if the stock is trimmed it will be trimmed at the top. It will also have been cut at the foredges of the pages and at the bottom, otherwise the book would be unopenable and unreadable.

```
\settrims{\langletop\rangle}{\langleedge\rangle}
\trimtop \trimedge
```

The command \settrims can be used to specify the amount intended to be trimmed from the top ($\langle t o p\rangle$) and foredge ($\langle e d g e\rangle$) of the stock material to produce the top and fore edge of a recto page. Note that the combination of \settrims and \settrimmedsize locate the page with respect to the stock. By default the top and edge trims are zero, which means that if any trimming is required it will be at the spine and bottom edges of the stock.

You can either do any trim calculation for youself or let LaTeX do it for you. For example, with an 8 in by 5 in page on 10 in by 7 in stock
\settrims\{2in\}\{2in\}
specifies trimming 2 in from the top and foredge of the stock, giving the desired page size. Taking a design where, say, the page is 90% of the stock size it's easy to get LaTeX to do the calculation:

```
\setlength{\trimtop}{\stockheight} % \trimtop = \stockheight
\addtolengh{\trimtop}{-\paperheight} % \trimtop = \stockheight - \paperheight
\setlength{\trimedge}{\stockwidth}
```

Table 6.1: Length of CMR lowercase alphabets

Font size	Length (points)
5 pt	87
6 pt	94
7 pt	102
8 pt	108
9 pt	118
10 pt	128
11 pt	139
12 pt	150
14 pt	175
17 pt	207
20 pt	245
25 pt	290

\addtolength\{\trimedge\}\{-\paperwidth\}
which will set all the trimming to be at the top and foredge. If you wanted, say, equal trims at the top and bottom you could go on as
\settrims\{0.5\trimtop\}\{\trimedge\}

6.4 The typeblock

Like the page, the typeblock is normally rectangular with the height greater than the width.
Table 6.1 gives the lowercase alphabet lengths for a range of Computer Modern Roman font sizes; this may be used in conjunction with Table 2.2 on page 25 when deciding on an appropriate textwidth.

\xlvchars \lxvchars

Based on this table, the two lengths \xlvchars and \lxvchars are approximately the lengths of a line of text with 45 or 65 characters, respectively, for the type size selected for the document.

If you are using a different font you can use something like the following to calculate and print out the length for you.

```
\newlength{\mylen} % a length
\newcommand{\alphabet}{abc...xyz} % the lowercase alphabet
\begingroup % keep font change local
% font specification e.g., \Large\sffamily
\settowidth{\mylen}{\alphabet}
The length of this alphabet is \the\mylen. % print in document
\typeout{The length of the Large sans alphabet is \the\mylen} % in log file
\endgroup % end the grouping
```

The \typeout macro will print the result to the terminal and the log file.
Morten Høgholm has done some curve fitting to the data in Table 2.2. He found that the expressions

$$
L_{65}=2.042 \alpha+33.41 \mathrm{pt}
$$

and

$$
L_{45}=1.415 \alpha+23.03 \mathrm{pt}
$$

fitted aspects of the data, where α is the length of the alphabet and L_{i} is the desired linewidth when the line should contain i characters. He suggested the following macros.

```
\setlxvchars[\langlefontspec\rangle]
\setxlvchars[\langlefontspec\rangle]
```

The macros \setlxvchars and \setxlvchars set the lengths \lxvchars and \xlvchars respectively for the font \langle fontspec \rangle. The default for \langle fontspec \rangle is \backslash normalfont.

For example, the values of \lxvchars and \xlvchars after calling
\setlxvchars \setxlvchars[\small\sffamily] are $: \backslash l$ xvchars $=293.93684 \mathrm{pt}$, and $\backslash x l v c h a r s=179.56801 \mathrm{pt}$.

Continuing on this theme, Morten also wrote:
...I was defining some environments that had to have \parindent as their indentation. For some reason I just wrote 1.5 em instead of \backslash parindent because I knew that was the value. What I had overlooked was that I had loaded the mathpazo package Pug02, thus altering various \fontdimens. Conclusion: the environment would insert $1.5 \mathrm{em}=18.0 \mathrm{pt}$, whereas the \parindent was only 17.6207 pt.

This, and other related situations can be avoided if one places

$$
\backslash \text { RequirePackage }\{\langle\text { font-package }\rangle\} \backslash \text { normalfont }
$$

before \documentclass, but I have to this day never seen this suggested. I would believe that most document classes have settings that depend on current font settings, which they should do for such things as \parindent. However the decision to let Computer Modern be the default font in LaTeX causes these dimensions to be set to erroneous values...

The height of the typeblock should be equivalent to an integral number of lines.

```
\settypeblocksize{\langleheight\rangle}{\langle~width\rangle}{\langleratio\rangle}
\textheight \textwidth
```

The command \settypeblocksize is the same as \settrimmedsize except that it sets the \textheight and \textwidth for the typeblock. For instance, here are three ways of specifying a 6 in by 3 in typeblock:

```
\settypeblocksize\{6in\}\{3in\}\{*\}
\settypeblocksize\{6in\}\{*\}\{0.5\}
\settypeblocksize\{*\}\{3in\}\{2\}
```

Table 6.2: Arguments and results for \setlrmargins

\langle spine \rangle	\langle edge \rangle	\langle ratio \rangle	Result
S	E	r	ambiguous
S	E	$*$	ambiguous
S	$*$	r	ambiguous
S	$*$	$*$	$E=K_{w}-S$
$*$	E	r	ambiguous
$*$	E	$*$	$S=K_{w}-E$
$*$	$*$	r	$E+S=K_{w}, E=r S$
$*$	$*$	$*$	$E+S=K_{w}, E=S$

The typeblock has to be located on the page. There is a relationship between the page, typeblock and margins. The sum of the spine margin, the foredge margin and the width of the typeblock must equal the width of the page. Similarly the sum of the upper margin, the lower margin and the height of the typeblock must equal the height of the page. The process of locating the typeblock with respect to the page can be viewed either as positioning the typeblock with respect to the edges of the page or as setting the margins between the page and the typeblock.

Remembering that the page layout should be defined in terms of the appearance as a spread, the spine margin is normally half the foredge margin, so that the white space is equally distributed around the sides of the text.

There is usually more latitude in choosing the proportions of the upper and lower margins, though usually the upper margin is less than the lower margin so the typeblock is not vertically centered.

Two methods are provided for setting the horizontal dimensions on a page. One where the width of the typeblock is fixed and the margins are adjustable, and the other where the size of the margins determines the width of the typeblock.

```
\setlrmargins{\langlespine\rangle}{\langleedge\rangle}{\langleratio\rangle}
```

\spinemargin \foremargin

The command \setlrmargins can be used to specify the side margins ${ }^{1}$ with the width of the page and the typeblock being fixed.

Either zero or one argument values are required, with any unvalued argument being denoted by an asterisk. There are several cases to consider and these are tabulated in Table 6.2

In the Table, S is the calculated spine margin, E is the calculated foredge margin, and P_{w} and B_{w} are respectively the page and typeblock widths. The \setlrmargins command maintains the relationship

$$
S+E=K_{w}=\mathrm{constant}\left(=P_{w}-B_{w}\right)
$$

The cases marked ambiguous in the Table are where the particular combination of argument values may make it impossible to guarantee the relationship.

[^14]Table 6.3: Arguments and results for \setlrmarginsandblock

\langle spine \rangle	\langle edge \rangle	\langle ratio \rangle	Result
S	E	r	S, E
S	E	$*$	S, E
S	$*$	r	$E=r S$
S	$*$	$*$	$E=S$
$*$	E	r	$S=r E$
$*$	E	$*$	$S=E$
$*$	$*$	r	ambiguous
$*$	$*$	$*$	ambiguous

Assuming that we have a 3in wide typeblock on a 5 in wide page and we want the spine margin to be 0.8 in and the foredge margin to be 1.2in (i.e., the foredge margin is half as big again as the spine margin) this can be accomplished in three ways (with the \pagewidth and \textwidth being previously specified and fixed):
\setlrmargins\{0.8in\}\{*\}\{*\} \% specify spine margin
\setlrmargins\{*\}\{1.2in\}\{*\} \% specify foredge margin
\setlrmargins\{*\}\{*\}\{1.5\} \% specify foredge/spine ratio

$$
\text { \setlrmarginsandblock }\{\langle\text { spine }\rangle\}\{\langle\text { edge }\rangle\}\{\langle\text { ratio }\rangle\}
$$

The command \setlrmarginsandblock can be used to specify the spine and foredge margins, where the page width is fixed and the width of the typeblock depends on the margins. Results for this command are given in Table 6.3. The same notation is used, but in this case \setlrmarginsandblock maintains the relationship

$$
S+B_{w}+E=\text { constant }\left(=P_{w}\right)
$$

The width of the typeblock is calculated from $B_{w}=P_{w}-S-E$.
Assuming that we want a 3 in wide typeblock on a 5 in wide page and we want the spine margin to be 0.8 in and the foredge margin to be 1.2 in (i.e., the foredge margin is half as big again as the spine margin) this can be accomplished in the following ways (with the \textwidth being calculated from the previously specified \pagewidth and the specified margins):

```
\setlrmarginsandblock{0.8in}{1.2in}{*} % specify both margins
\setlrmarginsandblock{0.8in}{*}{1.5} % specify spine & foredge/spine ratio
\setlrmarginsandblock{*}{1.2in}{0.667} % specify foredge & spine/foredge ratio
```

If we wanted the margins to be both 1in instead then any of the following will do it:
\setlrmarginsandblock\{1in\}\{1in\}\{*\} \% specify both margins
\setlrmarginsandblock\{1in\}\{*\}\{1\} \% specify spine \& foredge/spine ratio
\setlrmarginsandblock\{1in\}\{*\}\{*\} \% specify spine (foredge = spine)
\setlrmarginsandblock\{*\}\{1in\}\{1\} \% specify foredge \& spine/foredge ratio
\setlrmarginsandblock\{*\}\{1in\}\{*\} \% specify foredge (spine = foredge)

That completes the methods for specifying the horizontal spacings. There are similar commmands for setting the vertical spacings which are described below.

```
\setulmargins{\langleupper\rangle}{\langlelower\rangle}{\langle<ratio\rangle}
\uppermargin \lowermargin
```

Table 6.4: Arguments and results for \setulmargins

\langle upper \rangle	\langle lower \rangle	\langle ratio \rangle	Result
U	L	r	ambiguous
U	L	$*$	ambiguous
U	$*$	r	ambiguous
U	$*$	$*$	$L=K_{h}-U$
$*$	L	r	ambiguous
$*$	L	$*$	$U=K_{h}-L$
$*$	$*$	r	$L+U=K_{h}, L=r U$
$*$	$*$	$*$	$L+U=K_{h}, L=U$

Table 6.5: Arguments and results for \setulmarginsandblock

\langle upper \rangle	\langle lower \rangle	\langle ratio \rangle	Result
U	L	r	U, L
U	L	$*$	U, L
U	$*$	r	$L=r U$
U	$*$	$*$	$L=U$
$*$	L	r	$U=r L$
$*$	L	$*$	$U=L$
$*$	$*$	r	ambiguous
$*$	$*$	$*$	ambiguous

The command \setulmargins can be used to specify the upper and lower margins ${ }^{2}$ where the heights of the page and the typeblock are fixed. This is similar to \setlrmargins. Using a slightly different notation this time, with U being the upper margin, L being the lower margin, and P_{h} and B_{h} being the height of the page and typeblock, respectively, the results are shown in Table 6.4. The \setlrmargins command maintains the relationship

$$
U+L=K_{h}=\text { constant }\left(=P_{h}-B_{h}\right)
$$

$$
\text { \setulmarginsandblock }\{\langle\text { upper }\rangle\}\{\langle\text { lower }\rangle\}\{\langle\text { ratio }\rangle\}
$$

The command \setulmarginsandblock can be used to specify the upper and lower margins, where the page height is fixed and the height of the typeblock depends on the margins. Results for this command are given in Table 6.5. The same notation is used, but in this case \setulmarginsandblock maintains the relationship

$$
U+B_{h}+L=\text { constant }\left(P_{h}\right)
$$

The height of the typeblock is calculated from $B_{h}=P_{h}-U-L$.
\setcolsepandrule\{〈colsep $\rangle\}\{\langle$ thickness $\rangle\}$
\columnsep \columseprule

[^15]For twocolumn text the width of the gutter between the columns must be specified. LaTeX also lets you draw a vertical rule in the middle of the gutter. The macro \setcolsepandrule sets the gutter width, \columnsep, to 〈colsep〉 and \columnseprule, the thickness of the rule, to \langle thickness \rangle. A \langle thickness \rangle of 0pt means that the rule will be invisible. Visible rules usually have a thickness of about 0.4 pt . The total width of the twocolumns of text and the gutter equals the width of the typeblock.

This completes the main elements of the page - the page size, the size of the typeblock and the margins surrounding the typeblock.

6.5 Headers, footers and marginal notes

A page may have two additional items, and usually has at least one of these. They are the running header and running footer. If the page has a folio then it is located either in the header or in the footer. The word 'in' is used rather lightly here as the folio may not be actually in the header or footer but is always located at some constant relative position. A common position for the folio is towards the foredge of the page, either in the header of the footer. This makes it easy to spot when thumbing through the book. It may be placed at the center of the footer, but unless you want to really annoy the reader do not place it near the spine.

Often a page header contains the current chapter title, with perhaps a section title on the opposite header, as aids to the reader in navigating around the book. Some books put the book title into one of the headers, usually the verso one, but I see little point in that as presumably the reader knows which particular book he is reading, and the space would be better used providing more useful signposts.

```
\setheadfoot{\langleheadheight\rangle}{\langlefootskip\rangle}
\headheight \footskip
```

The command \setheadfoot sets the \headheight parameter to the value <headheight \rangle and the \footskip parameter to \langle footskip \rangle.

```
\setheaderspaces{\langleheaddrop\rangle}{\langleheadsep\rangle}{\langleratio\rangle}
\headdrop \headsep
```

The command \setheaderspaces is similar to \setulmargins. Using the notation U for the upper margin (as before), H_{h} for the \headheight, H_{s} for the \headsep and D for the \backslash headdrop, where the \headdrop is the distance between the top of the trimmed page and the top of the header ${ }^{3}$, then the macro \setheaderspaces maintains the relationship

$$
D+H_{s}=C_{h}=\text { constant }\left(=U-H_{h}\right)
$$

The macro \setheaderspaces is for specifying the spacing above and below the page header. The possible arguments and results are shown in Table 6.6. Typically, the \headsep is of more interest than the \headdrop.

Finally, some works have marginal notes. These really come last in the design scheme, providing the margins have been made big enough to accomodate them. Figure 6.3 shows the marginal note parameters on a verso page, and also illustrates that some parameters control different positions on the stock.

[^16]Table 6.6: Arguments and results for \setheaderspaces

\langle headdrop \rangle	\langle headsep \rangle	\langle ratio \rangle	Result
D	H_{s}	r	ambiguous
D	H_{s}	$*$	ambiguous
D	$*$	r	ambiguous
D	$*$	$*$	$H_{s}=C_{h}-D$
$*$	H_{s}	r	ambiguous
$*$	H_{s}	$*$	$D=C_{h}-H_{s}$
$*$	$*$	r	$H_{s}+D=C_{h}, H_{s}=r D$
$*$	$*$	$*$	$H_{s}+D=C_{h}, H_{s}=D$

```
\setmarginnotes{\langleseparation\rangle}{\langle width\rangle}{\langlepush\rangle}
\marginparsep \marginparwidth \marginparpush
```

The command \setmarginnotes sets the parameters for marginal notes. The distance \backslash marginparsep between the typeblock and any note is set to 〈separation \rangle, the maximum width for a note, \marginparwidth, is set to $\langle w i d t h\rangle$ and the minimum vertical distance between notes, \marginparpush, is set to $\langle p u s h\rangle$.

6.6 Putting it together

The page layout parameters just discussed are not always the same as those that are expected by LaTeX, or by LaTeX packages. The parameters that LaTeX expects are shown in Figure 6.1. You can either use the class commands for changing the page layout or change the LaTeX parameters directly using either \setlength or \addtolength applied to the parameter(s) to be modified. If you choose the latter route, those class parameters which differ from the standard LaTeX parameters will not be modified.

The general process of setting up your own page layout is along these lines:

- Decide on the required finished page size, and pick a stock size that is at least as large as the page.
- Use \setstocksize to set the values of \stockheight and \stockwidth, followed by \settrimmedsize to specify the values of \paperheight and \paperwidth.
- Decide on the location of the page with respect to the stock. If the page and stock sizes are the same, then call \settrims\{0pt\}\{0pt\}. If they are not the same size then decide on the appropriate values for \trimtop and \trimedge to position the page on the stock, and then set these through \settrims.
- Decide on the size of the typeblock and use \settypeblocksize to specify the values of \textheight and \textwidth.
- Pick the value for the spine margin, and use \setlrmargins to set the values for the \backslash spinemargin and \foremargin.

An alternative sequence is to use \setlrmarginsandblock to set the \textwidth for a particular choice of side margins.

Dashed lines represent the actual page size after trimming the stock.

Figure 6.3: The memoir class page layout parameters for a verso page

- Pick the value for the upper margin and use \setulmargins to set the values for the \uppermargin and \lowermargin.

An alternative sequence is to use \setulmarginsandblock to set the \textheight for a particular choice of upper and lower margins.

- Pick the values for the \headheight and \footskip and use \setheadfoot to specify these.
- Pick your value for \headskip and use \setheaderspaces to set this and \headdrop.
- If you are going to have any marginal notes, use \setmarginnotes to specify the values for \marginparsep, \marginparwidth and \marginparpush.
You can plan and specify your layout in any order that is convenient to you. Each of the page layout commands are independent; also if a value is set at one point, say the \textwidth, and is then later changed in some way, only the last of the settings is used as the actual value.

Comparing Figures 6.2 and 6.1 you can see the different layout parameters provided by the class and used by standard LaTeX. For convenience, and because the figures do not show all the parameters, the two sets of parameters are listed in Table 6.7.

```
\checkandfixthelayout
```

The macro \checkandfixthelayout takes all the class layout parameters, checks that they have 'sensible' values (e.g., the \textwidth is not negative), and then calculates the values for all those LaTeX layout parameters that differ from the class parameters. If you have used the class macros to change the layout in any way, you must call \checkandfixthelayout after you have made all the necessary changes. As an aid, the final layout parameter values are displayed on the terminal and written out to the log file.

```
\typeoutlayout
\typeoutstandardlayout
```

The command \typeoutlayout may be used at any point in the document to display the current class layout parameter values on the terminal and to write them to the log file. The \typeoutstandardlayout does the same thing, except that it outputs the values of the standard parameters.

When pdfLaTeX is used to generate a PDF version of a memoir document some special setup must be done.

\fixpdflayout

The macro \fixpdflayout is automatically called after the preamble when pdfLaTeX is used to generate PDF. The default definition is effectively:

```
\newcommand\{\fixpdflayout\}\{\ifpdf \ifnum \pdfoutput>0\relax
    \(\backslash p d f\) pageheight \(=\) \the \(\backslash\) stockheight
    \pdfpagewidth=\the\stockwidth
    \ifdim\pdfvorigin=Opt\pdfvorigin=1in\fi
    \ifdim\pdfhorigin=0pt\pdfhorigin=1in\fi
    \fi\fi\}
```

Table 6.7: The class and LaTeX page layout parameters

Class	LaTeX
\stockheight	
\trimtop	
\trimedge	
\stockwidth	
\backslash paperheight	\backslash paperheight
\paperwidth	\paperwidth
\textheight	\textheight
\textwidth	\textwidth
\columnsep	\columnsep
\columnseprule	\columnseprule
\spinemargin	
\backslash foremargin	
	\oddsidemargin \evensidemargin
\uppermargin	
\backslash headdrop	
	\topmargin
\backslash headheight	\backslash headheight
\backslash headsep	\backslash headsep
\footskip	\backslash footskip
\lowermargin	
\backslash \marginparsep	\marginparsep
\marginparwidth	\marginparwidth
\backslash marginparpush	\backslash marginparpush

The first settings (\pdfpage. . .) ensure that pdfLaTeX knows the size of the physical sheet for printing. The \...origin settings set the pdf origin per the TeX origin, provided that their values are 0 pt. If you have set the origin values yourself, either in a pdfLaTeX configuration file or earlier in the preamble, the \fixpdflayout macro will not alter them (if you need an origin value to be 0 , then set it to 0 sp , which is visually indistinguishable from 0pt).

```
\fixdvipslayout
```

The macro \fixdvipslayout is automatically called after the preamble when PDF output is not being produced. It provides the dvips processor with information about the stock size which a viewer or printer may use.

With a landscape document and using the processing route latex -> dvips the resulting .ps PostScript file may appear upside-down when viewed with, say, ghostview. If this happens try putting the following in your preamble:

```
\addtodef{\fixdvipslayout}{}{%
    \special{!TeXDict begin /landplus90{true}store end }}
```

If required, additional code can be added to \fixdvipslayout by repeated applications of \addtodef. Some other potential specials for PostScript printing may be (at least for an HP 5SiMx LaserJet duplex printer):
\special\{!TeXDict begin <</Duplex true>> setpagedevice end\} \% duplex
\special\{!TeXDict begin <</Tumble true>> setpagedevice end\} \% short side binding

Example

Suppose you want a page that will fit on both A4 and US letterpaper stock, wanting to do the least amount of trimming. The width of the typeblock should be such that there are the optimum number of characters per line, and the ratio of the height to the width of the typeblock should equal the golden section. The text has to start 50 pt below the top of the page. We will use the default \headheight and \footskip. The ratio of the foredge margin to the spine margin should equal the golden section, as should the space above and below the header. There is no interest at all in marginal notes, so we can ignore any settings for these.

We can either do the maths ourselves or get LaTeX to do it for us. Let's use LaTeX. First we will work out the size of the largest sheet that can be cut from A4 and letterpaper, whose sizes are $297 \times 210 \mathrm{~mm}$ and $11 \times 8.5 \mathrm{in} ; \mathrm{A} 4$ is taller and narrower than letterpaper.
\settrimmedsize\{11in\}\{210mm\}\{*\}
The stocksize is defined by the class option, but we have to work out the trims to reduce the stock to the page. To make life easier, we will only trim the foredge and the bottom of the stock, so the \trimtop is zero. The \trimtop and \trimedge are easily specified by
\setlength $\{\backslash$ trimtop\}\{0pt\}
\setlength $\{\backslash$ trimedge $\}\{$ stockwidth $\}$
\addtolength\{\trimedge\}\{-\paperwidth\}
Specification of the size of the typeblock is also easy
\settypeblocksize\{*\}\{\lxvchars\}\{1.618\}
and now the upper and lower margins are specified by
\setulmargins\{50pt\}\{*\}\{*\}
The spine and foredge margins are specified just by the value of the golden section, via
\setlrmargins\{*\}\{*\}\{1.618\}
The only remaining calculation to be done is the \headdrop and \headsep. Again this just involves using a ratio
\setheaderspaces\{*\}\{*\}\{1.618\}
To finish off we have to make sure that the layout is changed
\checkandfixthelayout

The page layout of this manual

The page layout for this manual is defined in the preamble as:

```
\settrimmedsize{11in}{210mm}{*}
\setlength{\trimtop}{0pt}
\setlength{\trimedge}{\stockwidth}
\addtolength{\trimedge}{-\paperwidth}
\settypeblocksize{7.75in}{33pc}{*}
\setulmargins{4cm}{*}{*}
\setlrmargins{1.25in}{*}{*}
```

Dashed lines represent the actual page size after trimming the stock.

Lengths are to the nearest pt.

\stockheight $=795 \mathrm{pt}$	\stockwidth $=614 \mathrm{pt}$
\pageheight $=795 \mathrm{pt}$	\pagewidth $=598 \mathrm{pt}$
\textheight $=562 \mathrm{pt}$	\textwidth $=396 \mathrm{pt}$
\trimtop $=0 \mathrm{pt}$	\trimedge $=17 \mathrm{pt}$
\uppermargin $=114 \mathrm{pt}$	\spinemargin $=90 \mathrm{pt}$
\headheight $=12 \mathrm{pt}$	\headsep $=24 \mathrm{pt}$
\footskip $=24 \mathrm{pt}$	\marginparsep $=17 \mathrm{pt}$
\marginparpush $=12 \mathrm{pt}$	\columnsep $=10 \mathrm{pt}$
\columnseprule $=0.0 \mathrm{pt}$	

Figure 6.4: The recto page layout for this manual

```
\setmarginnotes{17pt}{51pt}{\onelineskip}
\setheadfoot{\onelineskip}{2\onelineskip}
\setheaderspaces{*}{2\onelineskip}{*}
\checkandfixthelayout
```

An illustration of the layout is shown in Figure 6.4 which also lists the parameter values resulting from the code above, to the nearest point.

I initially used the layout defined in 86.6 which I thought looked reasonable, but then I decided to use the one above in order to save paper when anyone printed out the manual. The wider typeblock also makes it easier for TeX when dealing with lines that include unhyphenatable text, like the LaTeX code.

Andreas Mathias, via Rolf Niepraschk, ${ }^{4}$ has suggested that the following might be better for typesetting the manual on A4 paper.

```
\documentclass[a4paper] {memoir}
\settrimmedsize{297mm}{210mm}{*}
\setlength{\trimtop}{0pt}
\setlength{\trimedge}{\stockwidth}
\addtolength{\trimedge}{-\paperwidth}
\settypeblocksize{634pt}{448.13pt}{*}
\setulmargins{4cm}{*}{*}
\setlrmargins{*}{*}{1.5}
\setmarginnotes{17pt}{51pt}{\onelineskip}
\setheadfoot{\onelineskip}{2\onelineskip}
\setheaderspaces{*}{2\onelineskip}{*}
\checkandfixthelayout
```

[^17]
Chapter 7

Titles and abstracts

7.1 Introduction

The typeset format of the \maketitle command is virtually fixed within the LaTeX standard classes. This class provides a set of formatting commands that can be used to modify the appearance of the title information; that is, the contents of the \title, \author and \date commands. It also keeps the values of these commands so that they may be printed again later in the document. The class also inhibits the normal automatic cancellation of titling commands after \maketitle. This means that you can have multiple instances of the same, or perhaps different, titles in one document; for example on a half title page and the full title page. Hooks are provided so that additional titling elements can be defined and printed by \maketitle. The \thanks command is enhanced to provide various configurations for both the marker symbol and the layout of the thanks notes.

Questions about how to have a one-column abstract in a two-column paper seem to pop up fairly regularly on the comp.text.tex newsgroup. While an answer based on responses on ctt is provided in the FAQ, the class provides a more author-friendly means of accomplishing this. Further, additional controls are provided for the typesetting of the abstract environment in general.

7.2 Titles

Styling the titling

This part of the class is a reimplementation of the titling package Wil01g.
The class provides a configurable \maketitle command. The \maketitle command as defined by the class is essentially

```
\newcommand{\maketitle}{%
    \vspace*{\droptitle}
    \maketitlehooka
    {\pretitle \title \posttitle}
    \maketitlehookb
    {\preauthor \author \postauthor}
    \maketitlehookc
```

```
    {\predate \date \postdate}
    \maketitlehookd
    \thispagestyle{title}
}
```

where the title pagestyle is initially the same as the plain pagestyle. The various macros used within \maketitle are described below.

```
\pretitle{\langletext\rangle} \posttitle{\langletext\rangle}
\preauthor{\langletext\rangle} \postauthor{\langletext\rangle}
\predate{\langletext\rangle} \postdate{\langletext\rangle}
```

These six commands each have a single argument, \langle text \rangle, which controls the typesetting of the standard elements of the document's \maketitle command. The \title is effectively processed between the \pretitle and \posttitle commands; that is, like:
\{\pretitle \title \posttitle\}
and similarly for the \author and \date commands. The commands are initialised to mimic the normal result of \maketitle typesetting in the report class. That is, the default definitions of the commands are:
\backslash pretitle $\{\backslash$ begin $\{$ center $\} \backslash$ LARGE $\}$

\posttitle\{\par\end\{center\}\vskip 0.5em\} }
\preauthor\{\begin\{center\} } \large \lineskip 0.5em\%
\begin\{tabular\}[t]\{c\}\} }
\postauthor\{\end\{tabular\}\par\end\{center\}\} }
\backslash predate $\{\backslash$ begin\{center\} \backslash large $\}$
\postdate\{\par\end\{center\}\} }
They can be changed to obtain different effects. For example to get a right justified sans-serif title and a left justifed small caps date:
\pretitle\{\begin\{flushright\}\LARGE\sffamily\} }
\posttitle\{\par\end\{flushright\}\vskip } 0 . 5 \mathrm { em } \}
\backslash predate\{\begin\{flushleft\}\large\scshape\} }
\postdate\{\par\end\{flushleft\}\} }

\droptitle

The \maketitle command puts the title at a particular height on the page. You can change the vertical position of the title via the length \droptitle. Giving this a positive value will lower the title and a negative value will raise it. The default definition is:

```
\setlength\{\droptitle\}\{0pt\}
```

```
\maketitlehooka \maketitlehookb
\maketitlehookc \maketitlehookd
```

These four hook commands are provided so that additional elements may be added to \maketitle. These are initially defined to do nothing but can be renewed. For example, some publications want a statement about where an article is published immediately before the actual titling text. The following defines a command \published that can be used to hold the publishing information which will then be automatically printed by \maketitle.

```
\newcommand{\published}[1]{%
    \gdef\puB{#1}}
\newcommand{\puB}{}
\renewcommand{\maketitlehooka}{%
    \par\noindent \puB}
You can then say:
\published{Originally published in
    \textit{The Journal of ...}\thanks{Reprinted with permission}}
\maketitle
```

to print both the published and the normal titling information. Note that nothing extra had to be done in order to use the \thanks command in the argument to the new \published command.

```
\begin{titlingpage} text \end{titlingpage}
```

When one of the standard classes is used with the titlepage option, \maketitle puts the title elements on an unnumbered page and then starts a new page numbered page 1. The standard classes also provide a titlepage environment which starts a new unnumbered page and at the end starts a new page numbered 1 . You are entirely responsible for specifying exactly what and where is to go on this title page. If \maketitle is used within the titlepage environment it will start yet another page.

This class provides neither a titlepage option nor a titlepage environment; instead it provides the titlingpage environment which falls between the titlepage option and the titlepage environment. Within the titlingpage environment you can use the \maketitle command, and any others you wish. The titlingpage pagestyle is used, and at the end it starts another ordinary page numbered one. The titlingpage pagestyle is initially defined to be the same as the empty pagestyle.

For example, to put both the title and an abstract on a title page, with a plain pagestyle:
\begin\{document\} }
\begin\{titlingpage\} }
\aliaspagestyle\{titlingpage\}\{plain\}
\setlength\{\droptitle\}\{30pt\} lower the title
\backslash maketitle
\begin\{abstract\}... \end\{abstract\} }
\end\{titlingpage\} }
By default, titling information is centered with respect to the width of the typeblock. Occasionally someone asks on the comp.text.tex newsgroup how to center the titling information on a title page with respect to the width of the physical page. If the typeblock is centered with respect to the physical page, then the default centering suffices. If the typeblock is not physically centered, then the titling information either has to be shifted horizontally or \maketitle has to be made to think that the typeblock has been shifted horizontally. The simplest solution is to use the \calccentering and adjustwidth* command and environment. For example:

[^18]\calccentering\{\unitlength\}
}

```
\begin{adjustwidth*}{\unitlength}{-\unitlength}
        \maketitle
    \end{adjustwidth*}
\end{titlingpage}
\title{\langletext\rangle} \thetitle
\author{\langletext\rangle} \theauthor
\date{\langletext\rangle} \thedate
```

In the usual document classes, the contents (\langle text \rangle) of the \title, \author and \date macros used for \maketitle are unavailable once \maketitle has been issued. The class provides the \thetitle, \theauthor and \backslash thedate commands that can be used for printing these elements of the title later in the document, if desired.

\and \andnext

The macro \and is used within the argument to the \author command to add some extra space between the author's names. The class \andnext macro inserts a newline instead of a space. Within the \theauthor macro both \and and \andnext are replaced by a comma.

The class does not follow the the standard classes' habit of automatically killing the titling commands after \maketitle has been issued. You can have multiple \title, \author, \date and \maketitle commands in your document if you wish. For example, some reports are issued with a title page, followed by an executive summary, and then they have another, possibly modified, title at the start of the main body of the report. This can be accomplished like this:

```
\title{Cover title}
\begin{titlingpage}
\maketitle
\end{titlingpage}
...
\title{Body title}
\maketitle
```

\killtitle \keepthetitle
\emptythanks

The \killtitle macro makes all aspects of titling, including \thetitle etc., unavailable from the point that it is issued (using this command will save some macro space if the \thetitle, etc., commands are not required). Using this command is the class's manual version of the automatic killing performed by the standard classes. The \keepthetitle command performs a similar function, except that it keeps the \thetitle, \theauthor and \thedate commands, while killing everything else.

The \emptythanks command discards any text from prior use of \thanks. This command is useful when \backslash maketitle is used multiple times - the \thanks commands in each use just stack up the texts for output at each use, so each subsequent use of \maketitle will output all previous \thanks texts together with any new ones. To avoid this, put \emptythanks before each \maketitle after the first.

Styling the thanks

The class provides a configurable \thanks command.

```
\thanksmarkseries{\langleformat\rangle}
\symbolthanksmark
```

Any \thanks\{\} are marked with symbols in the titling and footnotes. The command \thanksmarkseries can be used to change the marking style. The \langle format \rangle argument is the name of one of the formats for printing a counter. The name is the same as that of a counter format but without the backslash. To have the \thanks marks as lowercase letters instead of symbols do:
\thanksmarkseries\{alph\}
Just for convenience the \symbolthanksmark command sets the series to be footnote symbols. Using this class the potential names for \langle format \rangle are: arabic, roman, Roman, alph, Alph, and fnsymbol.

```
\continuousmarks
```

The \thanks command uses the footnote counter, and normally the counter is zeroed after the titling so that the footnote marks start from 1. If the counter should not be zeroed, then just specify \continuousmarks. This might be required if numerals are used as the thanks markers.

```
\thanksheadextra{\langlepre\rangle}{\langlepost\rangle}
```

The \thanksheadextra command will insert $\langle p r e\rangle$ and $\langle p o s t\rangle$ before and after the thanks markers in the titling block. By default $\langle p r e\rangle$ and $\langle p o s t\rangle$ are empty. For example, to put parentheses round the titling markers do:
\thanksheadextra\{(\}\{)\}

$$
\text { \thanksmark }\{\langle n\rangle\}
$$

It is sometimes desireable to have the same thanks text be applied to, say, four out of six authors, these being the first 3 and the last one. The command \thanksmark $\{\langle n\rangle\}$ is similar to \footnotemark [$\langle n\rangle$] in that it prints a thanks mark identical to that of the $\langle n\rangle$ 'th \thanks command. No changes are made to any thanks in the footnotes. For instance, in the following the authors Alpha and Omega will have the same mark:

```
\title{The work\thanks{Draft}}
\author{Alpha\thanks{ABC},
    Beta\thanks{XYZ} and
    Omega\thanksmark{2}}
\maketitle
```

\thanksmarkstyle\{ \langle defn $\rangle\}$

By default the thanks mark at the foot is typeset as a superscript. In the class this is specifed via
\thanksmarkstyle\{\textsuperscript\{\#1\}\}
where \#1 will be replaced by the thanks mark symbol. You can change the mark styling if you wish. For example, to put parentheses round the mark and typeset it at normal size on the baseline:
\thanksmarkstyle\{(\#1)\}
\thanksmarkwidth

The thanks mark in the footnote is typeset right justified in a box of width \thanksmarkwidth. The first line of the thanks text starts after this box. The initialisation is
\setlength\{\thanksmarkwidth\}\{1.8em \}
giving the default position.

\thanksmarksep

The value of the length \thanksmarksep controls the indentation the second and subsequent lines of the thanks text, with respect to the end of the mark box. As examples:
\setlength $\{\backslash$ thanksmarksep $\}\{0 \mathrm{em}\}$
will align the left hand ends of of a multiline thanks text, while:
\setlength\{\thanksmarksep\}\{-\thanksmarkwidth\}
will left justify any second and subsequent lines of the thanks text. This last setting is the initialised value, giving the default appearance.

\thanksfootmark

A thanks mark in the footnote region is typeset by \thanksfootmark. The code for this is roughly:
\newcommand\{\thanksfootmark\}\{\%
\hbox to \thanksmarkwidth \backslash \hfil \normalfont\%
\thanksscript\{\thanksfootpre \thefootnote \thanksfootpost\}\}\}
where \thanksfootpre and \thanksfootpost are specified via the \thanksfootextra macro. You should not need to change the definition of \thanksfootmark but you may want to change the default definitions of one or more of the macros it uses.

```
\makethanksmark
\makethanksmarkhook
```

The macro \makethanksmark typesets both the thanks marker (via \thanksfootmark) and the thanks text. You probably will not need to change its default definition. Just in case, though, \makethanksmark calls the macro \makethanksmarkhook before it does any typesetting. The default definition of this is:
\newcommand\{\makethanksmarkhook\}\{\}
which does nothing.
You can redefine \makethanksmarkhook to do something useful. For example, if you wanted a slightly bigger baseline skip you could do:
\{\fontsize\{8\}\{11\}\selectfont\}
where the numbers 8 and 11 specify the point size of the font and the baseline skip respectively. In this example 8pt is the normal \backslash footnotesize in a 10 pt document, and 11 pt is the baselineskip for \backslash footnotesize text in an 11 pt document (the baseline skip is 9.5 pt in a 10 pt document); adjust these numbers to suit.

```
\thanksrule
\usethanksrule
\cancelthanksrule
```

By default, there is no rule above \thanks text that appears in a titlingpage environment. If you want a rule in that environment, put \usethanksrule before the \maketitle command, which will then print a rule according to the current definition of \thanksrule. \thanksrule is initialised to be a copy of \backslash footnoterule as it is defined at the end of the preamble. The definition of \thanksrule can be changed after \begin\{document\}. } If the definition of \thanksrule is modified and a \usethanksrule command has been issued, then the redefined rule may also be used for footnotes. Issuing the command \cancelthanksrule will cause the normal \backslash footnoterule definition to be used from thereon; another \usethanksrule command can be issued later if you want to swap back again.

The parameters for the vertical positioning of footnotes and thanks notes, and the default \footnoterule are the same (see Figure 13.1 on page 174). You will have to change one or more of these if the vertical spacings of footnotes and thanks notes are meant to be different.

7.3 Abstracts

Much of this part of the class is a reimplementation of the abstract package Wil01a.
The typeset format of an abstract in a report or article class ${ }^{1}$ document depends on the class options. The formats are:

- titlepage class option: The abstract heading (i.e., value of \abstractname) is typeset centered in a bold font; the text is set in the normal font and to the normal width.
- twocolumn class option: The abstract heading is typeset like an unnumbered section; the text is set in the normal font and to the normal width (of a single column).
- Default (neither of the above class options): The abstract heading is typeset centered in a small bold font; the text is set in a small font and indented like the quotation environment.

This class provides an abstract environment and handles to modify the typesetting of an abstract.
\begin\{abstract \} text \end\{abstract\} }
There is nothing special about using the abstract environment. Formatting is controlled by the macros described below.

The usual advice $[$ FAQ about creating a one-column abstract in a twocolumn document is to write code like this:

```
\documentclass[twocolumn...]{...}
```

...
\twocolumn[
\begin\{@twocolumnfalse\} }

[^19]```
 \maketitle need full-width title
 \begin{abstract}
 abstract text...
 \end{abstract}
 \end{@twocolumnfalse}
]
... hand make footnotes for any \thanks commands
```

\begin\{onecolabstract\} text \end\{onecolabstract\} } } <br> { \saythanks } \end{array}

The class provides a onecolabstract environment that you can use for a one column abstract in a twocolumn document, and it is used like this:

```
\documentclass[twocolumn...]{memoir}
\twocolumn[
 \maketitle need full-width title
 \begin{onecolabstract}
 abstract text...
 \end{onecolabstract}
]
\saythanks typesets any \thanks commands
```

The command \saythanks ensures that any \thanks texts are printed out as normal.
If you want, you can use the onecolabstract environment in place of the abstract environment - it doesn't have to be within the optional argument of the \twocolumn command. In fact, onecolabstract internally uses abstract for the typesetting.

```
\abstractcol
\abstractintoc
\abstractnum
\abstractrunin
```

The normal format for an abstract is with a centered, bold title and the text in a small font, inset from the margins.

The \abstractcol declaration specifies that an abstract in a twocolumn class option document should be typeset like a normal, unnumbered chapter. The \abstractintoc specifies that the abstract title should be added to the ToC. The declaration \abstractnum specifies that the abstract should be typeset like a numbered chapter and \abstractrunin specifies that the title of the abstract should look like a runin heading; these two declarations are mutually exclusive. Note that the \abstractnum declaration has no effect if the abstract is in the \frontmatter.

```
\abstractnamefont
```

\abstracttextfont

These two commands can be redefined to change the fonts used for typesetting the heading (defined via \abstractname) of the abstract environment and the font for typesetting the text of the abstract, respectively. The default definitions are

```
\newcommand{\abstractnamefont}{\normalfont\small\bfseries}
\newcommand{\abstracttextfont}{\normalfont\small}
```

```
\absleftindent \absrightindent
\absparindent \absparsep
```

This version of abstract uses a list environment for typesetting the text. These four lengths can be changed (via \setlength or \addtolength) to adjust the left and right margins, the paragraph indentation, and the vertical skip between paragraphs in this environment. The default values depend on whether or not the twocolumn class option is used.

```
\abslabeldelim{\langletext\rangle}
```

If the \abstractrunin declaration has been given, the heading is typeset as a run-in heading. That is, it is the first piece of text on the first line of the abstract text. The $\langle$ text $\rangle$ argument of \abslabeldelim is typeset immediately after the heading. By default it is defined to do nothing, but if you wanted, for example, the \abstractname to be followed by a colon and some extra space you could specify
\abslabeldelim\{:\quad\}
\absnamepos
If the \abstractrunin declaration is not used then the heading is typeset in its own environment, specified by \absnamepos. The default definition is
\newcommand\{\absnamepos\}\{center\}
It can be defined to be one of flushleft, center, or flushright to give a left, centered or right aligned heading; or to any other appropriate environment which is supported by a used package.

## \abstitleskip

With the \abstractrunin declaration a horizontal space of length \abstitleskip is typeset before the heading. For example, if \absparindent is non-zero, then:
\setlength\{\abstitleskip\}\{-\absparindent\}
will typeset the heading flush left.
Without the \abstractrunin declaration, \abstitleskip is aditional vertical space (either positive or negative) that is inserted between the abstract name and the text of the abstract.

## 8 Document divisions

The chapter is typeset using the sectional headings styles specified at the end of the chapter.

### 8.1 Introduction

In this chapter I first discuss the various kinds of divisions within a book and the commands for typesetting these.

After that I describe the class methods for modifying the appearance of the chapter and other sectional headings. The facilities described here provide roughly the same as you would get if you used the titlesec [Bez99] and sectsty [McD98] packages together; the commands are different, though.

### 8.2 Book divisions

As described earlier there are three main logical divisions to a book; the front, main and back matter. There are three LaTeX commands that correspond to these, namely \frontmatter, \mainmatter and \backmatter.

```
\frontmatter \frontmatter*
```

The \frontmatter declaration sets the folios to be printed in lowercase roman numerals, starts the page numbering from i, and prohibits any numbering of sectional divisions. Caption, equations, etc., will be numbered continuously. The starred version of the command, \frontmatter*, is similar to the unstarred version except that it makes no changes to the page numbering or the print style for the folios.

## \mainmatter \mainmatter*

The \mainmatter declaration, which is the default at the start of a document, sets the folios to be printed in arabic numerals, starts the page numbering from 1, and sections and above will be numbered. Float captions, equations, etc., will be numbered per chapter. The starred version of the command, \mainmatter*, is similar to the unstarred version except that it makes no changes to the page numbering or the print style for the folios.

## \backmatter

The \backmatter declaration makes no change to the pagination or folios but does prohibit sectional division numbering, and captions, etc., will be numbered continuously.

## 8．Document divisions

## 8．3 Sectional divisions

The memoir class lets you divide a document up into seven levels of named divisions． They range from part through chapter and down to sub－paragraph．A particular sectional division is specified by one of the commands \part，\chapter，\section，\subsection， which is probably as deep as you want to go．If you really need finer divisions，they are \subsubsection，\paragraph and lastly \subparagraph．All the sectional commands， except for chapters，have the same form，so rather than describing each one in turn I will use \section to stand for any one of them．

```
\section[\langletoc-title\rangle][\langlehead-title\rangle]{\langletitle\rangle}
```

\section*\{〈title $\rangle\}$

There are two forms of the command；the starred version is simpler，so I＇ll describe its effects first－it just typesets $\langle$ title $\rangle$ in the document in the format for that particular sectional division．Like the starred version，the plain version also typesets $\langle$ title $\rangle$ in the document， but it may be numbered．Diferent forms of the division title are available for the Table of Contents（ToC）and a running header，as follows：
－No optional argument：$\langle$ title $\rangle$ is used for the division title，the ToC title and a page header title．
－One optional argument：$\langle$ title $\rangle$ is used for the division title；$\langle t o c$－title $\rangle$ is used for the ToC title and a page header title．
－Two optional arguments：$\langle$ title $\rangle$ is used for the division title；$\langle$ toc－title $\rangle$ is used for the ToC title；$\langle h e a d-$－title $\rangle$ is used for a page header title．

A \section command restarts the numbering of any \subsections from one．For most of the divisions the $\langle$ title $\rangle$ is put on the page where the command was issued．The $\backslash$ part and \chapter commands behave a little differently．

The $\backslash$ part $\langle$ title $\rangle$ command puts the part name（default Part），number and $\langle$ title $\rangle$ on a page by itself．The numbering of parts has no effect on the numbering of chapters．

Later I＇ll give a list of LaTeX＇s default names，like Part．

```
\chapter[\langletoc-title\rangle][\langlehead-title\rangle]{\langletitle\rangle}
```

\chapter*[〈head-title $\rangle]\{\langle$ title $\rangle\}$

The \chapter command starts a new page and puts the chapter name（default Chapter）， number and $\langle$ title $\rangle$ at the top of the page．It restarts the numbering of any $\backslash$ sections from one．If no optional arguments are specified，$\langle$ title $\rangle$ is used as the ToC entry and for any page headings．If one optional argument is specified this is $\langle$ toc－title $\rangle$ and is used for the ToC entry and for page headings．If both optional arguments are specified the $\langle h e a d$－title $\rangle$ is used for page headings．

The \chapter＊command starts a new page and puts $\langle$ title $\rangle$ at the top of the page．It makes no ToC entry，changes no numbers and by default changes no page headings．If the optional 〈head－title〉 argument is given，this is used for page headings．Use of the optional argument has the side－effect that the secnumdepth counter is set to maxsecnumdepth（see below for an explanation of these）．

When the article option is in effect, however, things are slightly different. New chapters do not necessarily start on a new page. The \mainmatter command just turns on sectional numbering and starts arabic page numbering; the \backmatter command just turns off sectional numbering. The \tableofcontents command and friends, as well as any other commands created via \newlistof, always ${ }^{1}$ call \thispagestyle\{chapter\}. If you are using the article option you will probably want to ensure that the chapter pagestyle is the same as you normally use for the document.

Unlike the standard classes the $\langle$ title $\rangle$ is typeset ragged right. This means that if you need to force a linebreak in the $\langle$ title $\rangle$ you have to use \newline instead of the more usual <br>. For instance

\section\{A broken\newline title\}

In the standard classes a \section or other divisional heading that is too close to the bottom of a page is moved to the top of the following page. If this happens and \flushbottom is in effect, the contents of the short page are stretched to make the last line flush with the bottom of the typeblock.

```
\raggedbottomsectiontrue
\raggedbottomsectionfalse
\bottomsectionskip
```

The \raggedbottomsectiontrue declaration will typeset any pages that are short because of a moved divisional header as though \raggedbottom was in effect for the short page; other pages are not affected. The length \bottomsectionskip controls the amount of stretch on the short page. Setting it to zero allows the last line to be flush with the bottom of the typeblock. The default setting of 10 mm appears to remove any stretch.

The declaration \raggedbottomsectionfalse, which is the default, cancels any previous \raggedbottomsectiontrue declaration.

```
\plainbreak{\langlenum\rangle} \plainbreak*{\langlenum\rangle}
\fancybreak{\langletext\rangle} \fancybreak*{\langletext\rangle}
```

The $\backslash p l a i n b r e a k$ is an anonymous division. It puts $\langle n u m\rangle$ blank lines into the typescript and the first line of the following paragraph is not indented. Another anonymous division is $\backslash$ fancybreak which puts $\langle$ text $\rangle$ centered into the typescript and the initial line of the following paragraph is not indented. For example:
$\backslash$ fancybreak $\{\{*\} \backslash \backslash\{* * *\} \backslash \backslash\{*\}\}$
typesets a little diamond made of asterisks.
The starred versions of the commands indent the first line of the following paragraph.

```
\plainfancybreak{\langlespace\rangle}{\langlenum\rangle}{\langletext\rangle}
\plainfancybreak*{\langlespace\rangle}{\langlenum\rangle}{\langletext\rangle}
```

If a plain break comes at the top or bottom of a page then it is very difficult for a reader to discern that there is a break at all. If there is text on the page and enough space left to put some text after a break the \plainfancybreak command will use a $\backslash p l a i n b r e a k$ with $\langle n u m\rangle$ lines, otherwise (the break would come at the top or bottom of the page) it will use a $\backslash$ fancybreak with $\langle t e x t\rangle$. The $\langle$ space $\rangle$ argument is a length specifying the space needed for

[^20]
## 8. Document divisions

the $\langle n u m\rangle$ blank lines and some number of text lines for after the plain break. The starred version of the command uses the starred versions of the \plainbreak and \fancybreak commands.

Unfortunately there is an interaction between the requested, plain, and fancy break spaces. Let $P$ be the space (in lines) required for the plain break, $F$ the space (in lines) required for the fancy break, and $S$ the $\langle$ space $\rangle$ space (in lines). From some experiments it appears that the condition for the plain break to avoid the top and bottom of the page is that $S-P>1$. Also, the condition for the fancy break to avoid being put in the middle of a page (i.e., not at the top or bottom) is that $S-F<3$. For example, if the plain and fancy breaks take the same vertical space then $S=P+2$ is the only value that matches the conditions. In general, if $F=P+n$ then the condition is $1<S-P<3+n$, which means that for the \plainfancybreak command the fancy break must always take at least as much space as the plain break.

*     *         * 

The \plainfancybreak macro inserts a plain break in the middle of a page or if the break would come at the bottom or top of a page it inserts a fancy break instead.

```
\pfbreak \pfbreak*
\pfbreakskip
\pfbreakdisplay{\langletext\rangle}
```

The $\backslash p f b r e a k$ macro is an alternate for $\backslash p l a i n f a n c y b r e a k$ that may be more convenient to
 produce two blank lines. The fancy break, which takes the same vertical space, is given by the $\langle$ text $\rangle$ argument of $\backslash p f b r e a k d i s p l a y$. The default definition typesets three asterisks, as shown a few lines before this.
\& $\diamond$
You can change the definition of $\backslash p f b r e a k d i s p l a y$ for a different style if you wish. The fancy break just before this was produced via:
\{\%
\$\clubsuit\$\quad<br>\$\diamondsuit\$\quad\$\clubsuit\$\}
\fancybreak\{\pfbreakdisplay\}
I used \fancybreak as I'm not sure where the break will come on the page and the simple \pfbreak macro might just have produced a couple of blank lines instead of the fancy display.

The paragraph following $\backslash \mathrm{pfbreak}$ is not indented. If you want it indented use the $\backslash p f b r e a k *$ starred version.

```
\tableofcontents \tableofcontents*
\listoffigures \listoffigures*
\listoftables \listoftables*
```

In the standard classes the command \tableof contents typesets a Table of Contents (ToC) at the point in the document where it is issued. In the memoir class it also adds its title to the ToC. There is a starred version, \tableofcontents*, which does not enter itself into the ToC. So, in this class \tableofcontents* is equivalent to the standard classes' \tableof contents. The class also provides the \listoffigures and \listoftables commands which typeset a List of Figures (LoF) and a List of Tables (LoT), also entering their titles into the ToC. The starred versions of these make no ToC entry.

You can use \tableofcontents, \listoffigures, etc., more than once in a memoir class document.

```
\appendix
\appendixname
```

In the standard classes the \appendix command changes the numbering of chapters to an alphabetic form and changes the names of chapters from \chaptername (default Chapter) to the value of \appendixname (default Appendix). Thus, the first and any subsequent \chapters after the \appendix command will be 'Appendix A ...', 'Appendix B ...', and so on. This class provides the same command plus some other ways of dealing with appendices.

```
\appendixpage
\appendixpage*
\appendixpagename
```

The \appendixpage command generates a part-like page (but no Part or number) with the title given by the value of \appendixpagename (default Appendices). It also makes an entry in the ToC using \addappheadtotoc (see below). The starred version generates the appendix page but makes no ToC entry.

```
\addappheadtotoc
\appendixtocname
```

The command \addappheadtotoc adds an entry to the ToC. The title is given by the value of \appendixtocname (default Appendices).

```
\begin{appendices} text \end{appendices}
```

The appendices environment acts like the \appendix command in that it resets the numbering and naming of chapters. However, at the end of the environment, chapters are restored to their original condition and any chapter numbers continue in sequence as though the appendices environment had never been there.

```
\begin{subappendices} text \end{subappendices}
\namesubappendixtrue \namesubappendixfalse
```

The subappendices environment can be used to put appendices at the end of a chapter. Within the environment \section starts a new sub-appendix. You may put \addappheadtotoc at the start of the environment if you want a heading entry in the ToC. If you put the declaration \namesubappendixtrue before the subappendices environment, the sub-appendix number in the body of the document will be preceded by the value of \appendixname. The \namesubappendixfalse declaration may be used to switch off this behaviour.

Table 8.1: Division levels

| Division | Level |
| :--- | ---: |
| \part | -1 |
| \chapter | 0 |
| \section | 1 |
| \subsection | 2 |
| \subsubsection | 3 |
| \paragraph | 4 |
| \subparagraph | 5 |

### 8.4 Numbering

Each type of sectional division has an associated level as shown in Table 8.1. Divisions are numbered if the value of the secnumdepth counter is equal to or greater than their level. For example, with
\setcounter\{secnumdepth\}\{2\}
then subsections up to parts will be numbered.

```
\setsecnumdepth{\langlesecname\rangle}
\maxsecnumdepth{\langlesecname\rangle}
```

Instead of having to remember the levels if you want to change what gets numbered you can use the \setsecnumdepth command. It sets secnumdepth so that divisions $\langle$ secname $\rangle$ and above will be numbered. The argument 〈secname〉 is the name of a sectional division without the backslash. For example, to have subsections and above numbered:
\setsecnumdepth\{subsection\}
The command \maxsecnumdepth sets the maximum value for secnumdepth that can be used in the document. You can use \setsecnumdepth anywhere you want in the document to (temporarily) change the numbering level.

By default, the class sets:
$\backslash$ maxsecnumdepth\{section\}
\setsecnumdepth\{section\}
The commands \mainmatter and \mainmatter* set the secnumdepth to the value specified by \maxsecnumdepth.

The number setting commands come from the tocvsec2 package Wil99b.

### 8.5 Part headings

Part titles always start on a new page with the part pagestyle.
Several aspects of the typesetting of the \part title are configurable.
\beforepartskip \afterpartskip

These two commands effectively control the spacing before and after the part title. Their default definitions are:
\newcommand\{\beforepartskip\}\{\null\vfil\}
\newcommand\{\afterpartskip\}\{\vfil
\}
Together, these vertically center any typesetting on the page, and then start a new page. To move the title upwards on the page, for example, you could do:
\{\null\vskip Opt plus 0.3fil\}
\{\vskip Opt plus 0.7fil 
\}

## \midpartskip

The length \midpartskip is the vertical distance between the part number line and the part title. Its default value is 20 pt and can be changed by \setlength or \addtolength. It is probably better to have the spacing in terms of the \baselineskip, which will change depending on the font size, instead of a fixed amount.

```
\printpartname \partnamefont
\partnamenum
\printpartnum \partnumfont
```

The macro \printpartname typesets the part name (the value of \partname) using the font specified by \partnamefont. The default is the \bfseries font in the \huge size. Likewise the part number is typeset by $\backslash p r i n t p a r t n u m ~ u s i n g ~ t h e ~ f o n t ~ s p e c i f i e d ~ b y ~ \ p a r t n u m f o n t, ~$ which has the same default as \partnamefont. The macro \partnamenum, which is defined to be a space, is called between printing the part name and the number. All these can be changed to obtain different effects. For example, to have a large sans font with the part name flush left:
\{\normalfont\huge\sffamily $\backslash$ raggedright $\}$
$\backslash$ renewcommand $\{\backslash$ partnumfont $\}\{\backslash$ normalfont $\backslash$ huge $\backslash$ sffamily $\}$
or to only print the part number in the default font:
} $\}$
\{\}

## \printparttitle\{〈title〉\} \parttitlefont

The title is typeset by $\backslash$ printparttitle using the font specified by $\backslash p a r t t i t l e f o n t$. By default this is a \bfseries font in the \Huge size. This can be changed to have, say, the title set raggedleft in a small caps font by
\renewcommmand\{\parttitlefont\}\{\normalfont\Huge\scshape\raggedleft\}
The \parttitlefont font is also used by \appendixpage, or its starred version, when typesetting an appendix page.

### 8.6 Chapter headings

The chapter headings are configurable in much the same way as part headings, but in addition there are some built in chapter styles that you may wish to try, or define your own.

Chapters always start on a new page with the chapter pagestyle. The particular page, recto or verso, that they start on is mainly controlled by the class options. If the oneside option is used they start on the next new page, but if the twoside option is used the starting page may differ, as follows.

## 8. Document divisions

openright The chapter heading is typeset on the next recto page, which may leave a blank verso leaf.
openleft The chapter heading is typeset on the next verso page, which may leave a blank recto leaf.
openany The chapter heading is typeset on the next page and there will be no blank leaf.

> \openright \openleft \openany

These three declarations have the same effect as the options of the same name. They can be used anywhere in the document to change the chapter opening page.

## \clearforchapter

The actual macro that sets the opening page for a chapter is \clearforchapter. The \openright, \openleft and \openany define \clearforchapter to be respectively (see $\$ 17.12$ \cleartorecto, \cleartoverso and 
. You can obviously change \clearforchapter to do more than just start a new page.

Some books have the chapter headings on a verso page, with perhaps an illustration or epigraph, and then the text starts on the opposite recto page. The effect can be achieved like:

```
\openleft % chapter title on verso page
\chapter{The title} % chapter title
\begin{centering} % include a centered illustration
\includegraphics{...}
\end{centering}
\clearpage % go to recto page
Start of the text % chapter body
```

\chapterstyle\{〈style $\rangle\}$

The macro \chapterstyle is rather like the \pagestyle command in that it sets the style of any subsequent chapter headings to be $\langle$ style $\rangle$.

The class provides some predefined chapter styles, including the default style which is the familiar LaTeX book class chapter headings style. To use the chapterstyle fred just issue the commmand \chapterstyle\{fred\}. Different styles can be used in the same document. The predefined styles include:
default The normal LaTeX style.
section The heading is typeset like a section; that is, there is just the number and the title on one line. See Chapter 10 on page 105 for an example.
hangnum Like the section style except that the chapter number is put in the margin. See Chapter 11 on page 129 for an example.
companion This produces chapter headings like those the the LaTeX Companion series of books. See Chapter 14 on page 183 for an example.
article The heading is typeset like a \section heading in the article class. This is similar to the section style but different fonts and spacings are used.
demo Try this one to see what it does. On the other hand you can look at Chapter 15 on page 195 to see what it looks like.

```
\beforechapskip \afterchapskip
```

These two lengths define the spacing before and after the chapter heading. Their default values are 50 pt and 40 pt , respectively.

```
\midchapskip
```

The length \midchapskip is the vertical distance between the chapter number line and the chapter title. Its default value is 20 pt and can be changed by \setlength or \addtolength. It is probably better to have the spacing in terms of the \baselineskip, which will change depending on the font size, instead of a fixed amount.

```
\printchaptername \chapnamefont
\chapternamenum
\printchapternum \chapnumfont
```

The macro \printchaptername typesets the chapter name (the value of \chaptername, default Chapter) using the font specified by \chapnamefont. The default is the \bfseries font in the \huge size. Likewise the chapter number is typeset by \printchapternum using the font specified by \chapnumfont, which has the same default as \chapnamefont. The macro \chapternamenum, which is defined to be a space, is called between printing the chapter name and the number.

```
\printchaptertitle{\langletitle\rangle} \chaptitlefont
```

The title is typeset by \printchaptertitle using the font specified by \chaptitlefont. By default this is a \bfseries font in the \Huge size.

```
\insertchapterspace
```

By default a \chapter inserts a small amount of vertical space into the List of Figures and List of Tables. It calls \insertchapterspace to do this. The default definition is:

```
\newcommand{\insertchapterspace}{%
 \addtocontents{lof}{\protect\addvspace{10pt}}%
 \addtocontents{lot}{\protect\addvspace{10pt}}%
}
```

If you would prefer no inserted spaces then \{\} will do the job. Different spacing can be inserted by changing the value of the length arguments to \addvspace.

## Defining a chapter style

The following illustrates the essential parts of the code for typesetting a numbered chapter heading.

```
\chapterheadstart
\printchaptername \chapternamenum \printchapternum
\afterchapternum
\printchaptertitle{The chapter title}
\afterchaptertitle
```

\printchapternonum

The essential code for an unnumbered chapter is simpler than when there is a number to be typeset.

```
\chapterheadstart
\pintchapternonum
\printchaptertitle{The chapter title}
\afterchaptertitle
```

The various macros in the above are initially defined as:
\newcommmand\{\chapterheadstart\}\{\vspace*\{\beforechapskip\}\}
\newcommand\{\printchaptername\}\{\chapnamefont \@chapapp\}
\newcommand\{\chapternamenum\}\{\space\}
\newcommand\{\printchapternum\}\{\chapnumfont \thechapter\}
\newcommand\{\afterchapternum\}\{\par\nobreak\vskip \midchapskip\}
\newcommand\{\printchapternonum\}\{\}
\newcommand\{\printchaptertitle\}[1]\{\chaptitlefont \#1\}
\newcommand\{\afterchaptertitle\}\{\par\nobreak\vskip \afterchapskip\}

A new style is specified by changing the definitions of this last set of macros and/or the various font and skip specifications.

```
\makechapterstyle{\langlestyle\rangle}{\langletext\rangle}
```

Chapter styles are defined via the \makechapterstyle command, where $\langle$ style $\rangle$ is the style being defined and $\langle t e x t\rangle$ is the LaTeX code defining the style.

As an example, here is the code for defining the section chapter style.

```
\makechapterstyle{section}{%
 \renewcommand{\printchaptername}{}
 \renewcommand{\chapternamenum}{}
 \renewcommand{\chapnumfont}{\chaptitlefont}
 \renewcommand{\printchapternum}{\chapnumfont \thechapter\space}
 \renewcommand{\afterchapternum}{}
}
```

In this style, \printchaptername is vacuous, so the normal 'Chapter' is never typeset. The same font is used for the number and the title, and the number is typeset with a space after it. The macro \afterchapternum is vacuous, so the chapter title will be typeset immediately after the number.

In the standard classes the title of an unnumbered chapter is typeset at the same position on the page as the word 'Chapter' for numbered chapters. The macro \printchapternonum
is called just before an unnumbered chapter title text is typeset. By default this does nothing but you can use 

Bastiaan Veelo posted the code for a new chapter style to CTT on 2003/07/22 under the title [memoir] [contrib] New chapter style. His code, which I have slightly modified and changed the name to veelo, is below. I have also exercised editorial privilege on his comments.

I thought I'd share a new chapter style to be used with the memoir class The style is tailored for documents that are to be trimmed to a smaller width. When the bound document is bent, black tabs will appear on the fore side at the places where new chapters start as a navigational aid. We are scaling the chapter number, which most DVI viewers will not display accurately.

Bastiaan.

```
\makeatletter
\newlength{\numberheight}
\newlength{\barlength}
\makechapterstyle{veelo}{%
 \setlength{\beforechapskip}{40pt}
 \setlength{\midchapskip}{25pt}
 \setlength{\afterchapskip}{40pt}
 \renewcommand{\chapnamefont}{\normalfont\LARGE\flushright}
 \renewcommand{\chapnumfont}{\normalfont\HUGE}
 \renewcommand{\chaptitlefont}{\normalfont\HUGE\bfseries\flushright}
 \renewcommand{\printchaptername}{%
 \chapnamefont\MakeUppercase{\@chapapp}}
 \renewcommand{\chapternamenum}{}
 \setlength{\numberheight}{18mm}
 \setlength{\barlength}{\paperwidth}
 \addtolength{\barlength}{-\textwidth}
 \addtolength{\barlength}{-\spinemargin}
 \renewcommand{\printchapternum}{%
 \makebox[0pt] [1] {%
 \hspace{.8em}%
 \resizebox{!}{\numberheight}{\chapnumfont \thechapter}%
 \hspace{.8em}%
 \rule{\barlength}{\numberheight}
 }
 }
 \makeoddfoot{plain}{}{}{\thepage}
}
\makeatother
```

If you implement this you will also need to use the graphicx package CR99 because of the \resizebox macro. The veelo style works best for chapters that start on recto pages.
... end of last line of preceding text.

```
|beforeskip| + \parskip (of text font) + \baselineskip (of heading font)
 mmant .3.5 Heading Title
 afterskip + \parskip (of heading font) + \baselineskip (of text font)
```

This is the start of the after-heading text, which continues on ... second line of text following the heading ...

Figure 8.1: Displayed sectional headings

For details of how the other chapter styles are defined, look at the documented class code. This should give you ideas if you want to define your own style.

Note that it is not necessary to define a new chapterstyle if you want to change the chapter headings - you can just change the individual macros without putting them into a style.

### 8.7 Lower level headings

The lower level headings - sections down to subparagraphs - are also configurable, but there is nothing corresponding to chapter styles.

There are essentially three things that may be adjusted for a heading: (a) the vertical distance between the baseline of the text above the heading to the baseline of the heading title, (b) the indentation of the heading from the left hand margin, and (c) the style (font) used for the heading title. Additionally, a heading may be runin to the text or as a display before the following text; in the latter case the vertical distance between the heading and the following text may also be adjusted. Figure 8.1 shows the parameters controlling a displayed sectional heading and Figure 8.2 shows the parameters for a runin heading.

In the following I will use $S$ to stand for one of sec, subsec, subsubsec, para or subpara, which are in turn shorthand for section through to subparagraph.

$$
\text { \setbeforeSskip\{〈skip }\rangle\}
$$

The absolute value of the $\langle$ skip $\rangle$ length argument is the space to leave above the heading. If the actual value is negative then the first line after the heading will not be indented. The default $\langle s k i p\rangle$ depends on the particular level of heading, but for a $\backslash$ section (i.e., when $\mathrm{S}=\mathrm{sec}$ ) it is
$-3.5 e x$ plus $-1 e x$ minus $-.2 e x$
... end of last line of preceding text.

```
\(\|\) beforeskip \(\|+\backslash\) parskip (of text font) + \baselineskip (of heading font)
```


second line of text following the heading ...

Figure 8.2: Runin sectional headings
where the plus and minus values are the allowable stretch and shrink; note that all the values are negative so that there is no indentation of the following text. If you wanted indentation then you could do
\setbeforesecskip\{3.5ex plus 1ex minus .2ex\}

```
\setSindent{\langlelength\rangle}
```

The value of the 〈length〉 length argument is the indentation of the heading (number and title) from the lefthand margin. This is normally 0pt.

$$
\text { \setSheadstyle\{}\langle\text { text }\rangle\}
$$

This macro specifies the style (font) for the sectional number and title. As before, the default value of the $\langle t e x t\rangle$ argument depends on the level of the heading. For a $\backslash$ subsection (i.e., $\mathrm{S}=$ subsec $)$ it is \large $\backslash$ bfseries $\backslash$ raggedright, to typeset in the $\backslash$ bfseries font in the \large size; the title will also be set ragged right (i.e., there will be no hyphenation in a multiline title).

Note that the very last element in the $\langle$ text $\rangle$ argument may be a macro that takes one argument (the number and title of the heading). So, if for some reason you wanted \subsubsection titles to be all uppercase, centered, and in the normal font, you can do
\setsubsubsecheadtstyle\{\normalfont\MakeUppercase\}
As another example, although I don't recommend this, you can draw a horizontal line under section titles via:
\newcommand\{\ruledsec\}[1] \{\%
\Large\bfseries $\backslash$ raggedright \#1 \rule\{\textwidth\}\{0.4pt\}\}
\setsecheadstyle\{\ruledsec\}

```
\setafterSskip{\langleskip\rangle}
```

If the value of the $\langle s k i p\rangle$ length argument is positive it is the space to leave between the display heading and the following text. If it is negative, then the heading will be runin and the value is the horizontal space between the end of the heading and the following text. The default $\langle s k i p\rangle$ depends on the particular level of heading, but for a \section (i.e., when $S=s e c$ ) it is $2.3 e x$ plus $.2 e x$, and for a $\backslash$ subparagraph (i.e., $S=$ subpara), which is a runin heading, it is -1 em .

```
\@hangfrom{\stuff\rangle}
\sethangfrom{\langlecode\rangle}
```

Internally all the titling macros use a macro called \@hangfrom which by default makes multiline titles look like a hanging paragraph. The default definition of \@hangfrom (in file ltsect.dtx) is effectively:
\newcommand\{\@hangfrom\}[1]\{\setbox\@tempboxa\hbox\{\{\#1\}\}\%
\hangindent \wd\@tempboxa\noindent\box\@tempboxa\}
The argument is put into a box and its width is measured, then a hanging paragraph is started with the argument as the first thing and second and later lines indented by the argument's width.

The \sethangfrom macro redefines \@hangfrom to be $\langle$ code $\rangle$. For example, to have the titles set as block paragraphs instead of hanging paragraphs, simply do:
\sethangfrom\{\noindent \#1\}
Note that you have to use \#1 at the position in the replacement code for \@hangfrom where the argument to \@hangfrom is to be located.

```
\@seccntformat{\langlestuff\rangle}
\setsecnumformat {\code\rangle}
```

Internally all the titling macros use a macro called \@seccntformat which defines the formatting of sectional numbers in a title. Its default definition (in file ltsect.dtx) is effectively:
\newcommand\{\@seccntformat\}[1]\{\csname the\#1\endcsname\quad\}
which formats the sectional numbers as \thesec... with a space afterwards. The command \setsecnumformat redefines \@seccntformat to be $\langle$ code $\rangle$. For example, to put a colon and space after the number
\setsecnumformat\{\csname the\#1\endcsname: \quad\}
Note that you have to use \#1 where you want the argument (sectional number) of \@seccntformat to go.

```
\hangsecnum
\defaultsecnum
```

The macro \hangsecnum is a declaration that makes sectional numbers hang in the margin. The macro \defaultsecnum is a declaration that reverses the effect of \hangsecnum, that is, sectional numbers will be typeset in their familiar places.

```
\Shook
\setShook{\langletext\rangle}
```

The macro \Shook is called immediately before the typesetting of the title; its default definition does nothing. The macro \setShook redefines $\backslash$ Shook to be $\langle t e x t\rangle$. You can use this hook, for example, to insert a \sethangfrom or \setsecnumformat command into the definition of a particular section division command.

Table 8.2: Default fonts for sectional headings

| \partnamefont | \huge\bfseries |
| :---: | :---: |
| \partnumfont | $\backslash$ huge \bfseries |
| \parttitlefont | $\backslash$ Huge \bfseries |
| \chapnamefont | $\backslash$ normalfont\huge\bfseries |
| \chapnumfont | $\backslash$ normalfont $\backslash$ huge $\backslash$ bfseries |
| \chaptitlefont | $\backslash$ normalfont $\backslash$ Huge $\backslash$ bfseries |
| \secheadstyle | \Large\bfseries\raggedright |
| \subsecheadstyle | \large\bfseries\raggedright |
| \subsubsecheadstyle | $\backslash$ normalsize\bfseries \raggedright |
| \paraheadstyle | $\backslash$ normalsize\bfseries |
| \subparaheadstyle | $\backslash$ normalsize\bfseries |

### 8.8 Heading styles for this chapter

As a reference, Table 8.2 lists the default fonts used for the sectional headings. These fonts are all bold but in different sizes depending on the division level.

The commands described below have been put just before the start of this chapter.
For this chapter I have used sans fonts instead of bold fonts. The commands to do this are shown below for chapters down to subsubsections.

```
\renewcommand{\chapnumfont}{\normalfont\huge\sffamily}
\renewcommand{\chaptitlefont}{\chapnumfont}
\setsecheadstyle{\Large\sffamily\raggedright}
\setsubsecheadstyle{\large\sffamily\raggedright}
\setsubsubsecheadstyle{\normalsize\sffamily\raggedright}
```

The chapter heading is typeset like a section heading. I redefine \printchaptername and \chapternamenum to do nothing, which eliminates the printing of the chapter name and also anything that may be between the name and the number. Changing \afterchapternum to be just \space eliminates the vertical space that is normally between the number and the title, and instead puts a normal word space between the number and the title.

```
\renewcommand\{\printchaptername\}\{\}
\(\backslash\) renewcommand \(\{\backslash\) chapternamenum \(\}\}\)
\renewcommand\{\afterchapternum\}\{\space\}
```

Before the next chapter starts, I want to revert back to the default divisional styles, so the following code is used at the end of this chapter.

```
\chapterstyle{default}
\setsecheadstyle{\Large\bfseries\raggedright}
\setsubsecheadstyle{\large\bfseries\raggedright}
\setsubsubsecheadstyle{\normalsize\bfseries\raggedright}
```

Calling \chapterstyle\{default\} deals with the chapter heading. The other commands change the lower level fonts back to their default values.

### 8.9 Footnotes and headers

With the sectioning commands the text of the required argument $\langle$ title $\rangle$ is used as the text for the section title in the body of the document.

When the optional argument $\langle$ toc-title $\rangle$ is used in a sectioning command it is moving and any fragile commands must be \protected, while the $\langle$ title $\rangle$ argument is fixed. The $\langle$ toc-title $\rangle$ also serves double duty:

1. It is used as the text of the title in the ToC;
2. It is used as the text in page headers.

If the optional argument is not present, then the $\langle$ title $\rangle$ is moving and serves the triple duty of providing the text for the body and ToC titles and for page headers.

Some folk feel an urge to add a footnote to a sectional title, which should be resisted. If their flesh is weak, then the optional argument must be used and the \footnote attached to the required argument only. If the optional argument is not used then the footnote mark and text is likely to be scattered all over the place, on the section page, in the ToC , on any page that includes $\langle$ title $\rangle$ in its header. This is unacceptable to any reader. So, a footnoted title should look like this:
\chapter[Title text]\{Title text $\backslash$ footnote\{Do you really have to do this?\}\}

### 8.10 Pagination and folios

Every page in a LaTeX document is included in the pagination. That is, there is a number associated with every page and this is the value of the page counter. This value can be changed at any time via either \setcounter or \addtocounter.

```
\pagenumbering{\langlenum-style\rangle}
\pagenumbering*{\langlenum-style\rangle}
```

The macros \pagenumbering and \pagenumbering* cause the folios to be printed using $\langle n u m-s t y l e\rangle$ for the page number, where $\langle n u m$-style $\rangle$ can be one of: Alph, alph, arabic, Roman or roman for uppercase and lowercase letters, arabic numerals, and uppercase and lowercase Roman numerals, respectively. As there are only 26 letters, Alph or alph can only be used for a limited number of pages. Effectively, the macros redefine \thepage to be \num-style\{page\}. Additionally, the \pagenumbering command resets the page counter to one; the starred version does not change the counter.

It is usual to reset the page number back to one each time the style is changed, but sometimes it may be desireable to have a continuous sequence of numbers irrespective of their displayed form, which is where \pagenumbering* comes in handy.

```
\savepagenumber
\restorepagenumber
```

The macro \savepagenumber saves the current page number, and the macro \restorepagenumber sets the page number to the saved value. This pair of commands may be used to apparently interrupt the pagination. For example, perhaps some full page illustrations will be electronically, as opposed to physically, tipped in to the document and pagination is not required for these. This could be done along the lines of:

```
\clearpage % get onto next page
\savepagenumber % save the page number
\pagestyle{empty} % no headers or footers
%% insert the illustrations
\clearpage
\pagestyle{...}
\restorepagenumber
```

If you try this sort of thing, you may have to adjust the restored page number by one.
\restorepagenumber
\% perhaps \addtocounter\{page\}\{1\} or \addtocounter\{page\}\{-1\}
Whether or not this will be necessary depends on the timing of the $\backslash \ldots$. pagenumber commands and TeX's decisions on page breaking.

## Chapter 9

## Paragraphs and lists

This chapter is typeset with the default sectional headings.

### 9.1 Introduction

Within a sectional division the text is typically broken up into paragraphs. Sometimes there may be text that is set off from the normal paragraphing, like quotations or lists.

### 9.2 Paragraphs

There are basically two parameters that control the appearance of normal paragraphs.
\parindent \parskip

The length \parindent is the indentation of the first line of a paragraph and the length \parskip is the vertical spacing between paragraphs, as illustrated in Figure 9.1. The value of \parskip is usually 0pt, and \parindent is usually defined in terms of ems so that the actual indentation depends on the font being used. If \parindent is set to a negative length, then the first line of the paragraphs will be 'outdented' into the lefthand margin.


Figure 9.1: Paragraphing parameters

A block paragraph is obtained by setting \parindent to 0em; \parskip should be set to some positive value so that there is some space between paragraphs to enable them to be identified. Most typographers heartily dislike block paragraphs, not only on aesthetical grounds but also on practical grounds. Consider what happens if the last line of a block paragraph is full and also is the last line on the page. The following block paragraph will start at the top of the next page but there will be no identifiable space to indicate an inter-paragraph break.

It is important to know that LaTeX typesets paragraph by paragraph. For example, the \baselineskip that is used for a paragraph is the value that is in effect at the end of the paragraph, and the font size used for a paragraph is according to the size declaration (e.g., $\backslash$ large or \normalsize or \small) in effect at the end of the paragraph.

## Hanging paragraphs

A hanging paragraph is one where the length of the first few lines differs from the length of the remaining lines. (A normal indented paragraph may be considered to be a special case of a hanging paragraph where 'few $=$ one').

$$
\backslash \text { hangpara }\{\langle\text { indent }\rangle\}\{\langle\text { num }\rangle\}
$$

Using \hangpara at the start of a paragraph will cause the paragraph to be hung. If the length $\langle$ indent $\rangle$ is positive the lefthand end of the lines will be indented but if it is negative the righthand ends will be indented by the specified amount. If the number $\langle n u m\rangle$, say N , is is negative the first N lines of the paragraph will be indented while if N is positive the $\mathrm{N}+1$ th lines onwards will be indented. This paragraph was set with $\backslash$ hangpara\{3em\} \{-3\}. There should be no space between the \hangpara command and the start of the paragraph.

$$
\text { \begin } \{ \text { hangparas } \} \{ \langle \text { indent } \rangle \} \{ \langle \text { num } \rangle \} \text { text } \backslash \text { end } \{ \text { hangparas } \}}
$$

The hangparas environment is like the \hangpara command except that every paragraph in the environment will be hung.

The code implementing the hanging paragraphs is the same as for the hanging package Wil01f. Examples of some uses can be found in Thi99.

As noted eleswhere the sectioning commands use the internal macro \@hangfrom as part of the formatting of the titles.

$$
\backslash \text { hangfrom }\{\langle t e x t\rangle\}
$$

Simple hung paragraphs (like this one) can be specified using the \hangfrom macro. The macro puts $\langle t e x t\rangle$ in a box and then makes a hanging paragraph of the following material. This paragraph commenced with \hangfrom\{Simple hung paragraphs \}(like ... and you are now reading the result.

### 9.3 Flush and ragged

Flushleft text has the lefthand end of the lines aligned vertically at the lefthand margin and flushright text has the righthand end of the lines aligned vertically at the righthand margin. The opposites of these are raggedleft text where the lefthand ends are not aligned and raggedright where the righthand end of lines are not aligned. LaTeX normally typesets flushleft and flushright.

```
\begin{flushleft} text \end{flushleft}
\begin{flushright} text \end{flushright}
\begin{center} text \end{center}
```

Text in a flushleft environment is typeset flushleft and raggedright, while in a flushright environment is typeset raggedleft and flushright. In a center environment the text is set raggedleft and raggedright, and each line is centered. A small vertical space is put before and after each of these environments.

```
\raggedleft \raggedright \centering
```

The \raggedleft declaration can be used to have text typeset raggedleft and flushright, and similary the declaration \raggedright causes typesetting to be flushleft and raggedright. The declaration  typesets raggedleft and raggedright with each line centered. Unlike the environments, no additional space is added.

```
\raggedyright[\langlespace\rangle]
\ragrparindent
```

When using \raggedright in narrow columns the right hand edge tends to be too ragged, and paragraphs are not indented. Text set \raggedyright usually fills more of the available width and paragraphs are indented by \ragrparindent, which is initially set to $\backslash$ parindent. The optional $\langle$ space $\rangle$ argument, whose default is 2 em , can be used to adjust the amount of raggedness. As examples:

```
\raggedyright[0pt] \% typeset flushright
\raggedyright[1fil] \% same as \raggedright
\raggedyright[0.5em] \% less ragged than \raggedright
```

Remember that LaTeX typesets on a per-paragraph basis, so that putting the sequence of , \raggedleft declarations in the same paragraph will cause the entire paragraph to be typeset raggedleft and flushright - the  declaration is not the one in effect at the end of the paragraph.

### 9.4 Quotations

LaTeX provides two environments that are typically used for typesetting quotations.

```
\begin{quote} text \end{quote}
\begin{quotation} text \end{quotation}
```

In both of these environments the text is set flushleft and flushright in a measure that is smaller than the normal textwidth. The only difference between the two environments is that paragraphs are not indented in the quote environment but normal paragraphing is used in the quotation environment.

### 9.5 Changing the textwidth

The quote and quotation environments both locally change the textwidth, or more precisely, they temporarily increase the left and right margins by equal amounts. Generally speaking it is not a good idea to change the textwidth but sometimes it may be called for.

The commands and environment described below are similar to those in the chngpage package Wil01b, but do differ in some respects.

```
\begin{adjustwith}{\langleleft\rangle}{\langleright\rangle} text \end{adjustwith}
\begin{adjustwith*}{\langleleft\rangle}{\langleright\rangle} text \end{adjustwith*}
```

The adjustwidth environment temporarily adds the length 〈left〉 to the lefthand margin and $\langle r i g h t\rangle$ to the righthand margin. That is, a positive length value increases the margin and hence reduces the textwidth, and a negative value reduces the margin and increases the textwidth. The quotation environment is roughly equivalent to
\begin\{adjustwidth\}\{2.5em\}\{2.5em\} }
The starred version of the environment, adjustwidth*, is only useful if the left and right margin adjustments are different. The starred version checks the page number and if it is odd then adjusts the left (spine) and right (outer) margins by $\langle$ left $\rangle$ and $\langle r i g h t\rangle$ respectively; if the page number is even (a verso page) it adjusts the left (outer) and right (spine) margins by $\langle r i g h t\rangle$ and $\langle l e f t\rangle$ respectively.

```
\strictpagechecktrue \strictpagecheckfalse
```

Odd/even page checking may be either strict (\strictpagechecktrue) or lazy (\strictpagecheckfalse). Lazy checking works most of the time but if it fails at any point then the strict checking should be used.

As an example, if a figure is wider than the textwidth it will stick out into the righthand margin. It may be desireable to have any wide figure stick out into the foredge margin where there is usually more room than at the spine margin. This can be accomplished by

```
\begin\{figure\} }
\centering
\strictpagechecktrue
\begin\{adjustwidth*\}\{0em\}\{-3em\} }
\% the illustration
\caption\{...\}
\end\{adjustwidth*\} }
\end\{figure\} }
```

A real example in this manual is Table 11.4 on page 152 which is wider than the typeblock. In that case I just centered it by using adjustwidth to decrease each margin equally. In brief, like

```
\begin{table}
\begin{adjustwidth}{-1cm}{-1cm}
\centering
\end{adjustwidth}
\end{table}
```

Note that the adjustwidth environment applies to complete paragraphs；you can＇t change the width of part of a paragraph except for hanging paragraphs or more esoterically via \parshape．Further，if the adjusted paragraph crosses a page boundary the margin changes are constant；a paragraph that is，say，wider at the right on the first page will also be wider at the right as it continues onto the following page．

The center environment horizontally centers its contents with respect to the typeblock． Sometimes you may wish to horizontally center some text with respect to the physical page， for example when typesetting a colophon which may look odd centered with respect to the （unseen）typeblock．

The calculation of the necessary changes to the spine and foredge margins are simple． Using the same symbols as earlier in $\$ 6.4\left(P_{w}\right.$ and $B_{w}$ are the width of the trimmed page and the typeblock，respectively；$S$ and $E$ are the spine and foredge margins，respectively）then the amount $M$ to be added to the spine margin and subtracted from the foredge margin is calculated as：

$$
M=1 / 2\left(P_{w}-B_{w}\right)-S
$$

For example，assume that the \textwidth is 5 inches and the \spinemargin is 1 inch． On US letterpaper（\paperwidth is 8.5 inches）the foredge margin is then 2.5 inches，and 0.75 inches $^{1}$ must be added to the spine margin and subtracted from the foredge to center the typeblock．The adjustwidth environment can be used to make the（temporary）change．
\begin\｛adjustwidth＊\}\{0.75in\}\{-0.75in\} ...

```
\calccentering{\langlelength\rangle}
```

If you don＇t want to do the above calculations by hand，\calccentering will do it for you． The 〈length argument must be the name of a pre－existing length command，including the backslash．After calling \calccentering，〈length〉is the amount to be added to the spine margin and subtracted from the foredge margin to center the typeblock．An example usage is

```
\calccentering{\mylength}
\begin{adjustwidth*}{\mylength}{-\mylength}
text horizontally centered on the physical page
\end{adjustwidth*}
```

You do not necessarily have to define a new length for the purposes of \calccentering． Any existing length will do，such as \unitlength，provided it will be otherwise unused between performing the calculation and changing the margins（and that you can，if necessary reset it to its original value－the default value for \unitlength is 1 pt ）．

[^21]
### 9.6 Lists

Standard LaTeX provides 4 kinds of lists. There is a general list environment which you can use to define your own particular kind of list, and the description, itemize and enumerate lists (which are internally defined in terms of the general list environment).

This class provides the normal description list but the itemize and enumerate lists are extended versions of the normal ones.

```
\begin{description} \item[\langlelabel\rangle] ... \end{description}
\descriptionlabel〈style\rangle
```

In a description list the style of the $\langle l a b e l\rangle$ is given by the $\langle$ style $\rangle$ argument of the \descriptionlabel command. The default definition is
\newcommand*\{\descriptionlabel\}[1]\{\hspace\labelsep \normalfont $\backslash$ bfseries \#1\}
which gives a bold label. To have, for example, a sans label instead, do
[1]\{\hspace\labelsep
\normalfont\sffamily \#1\}
The itemize and enumerate environments below are based on the enumerate package Car98c.

```
\begin{itemize}[\langlemark\rangle] \item ... \end{itemize}
```

The normal markers for - s in an itemize list are:


1. bullet ( $\bullet$ textbullet),
2. bold en-dash (- \bfseries $\backslash t e x t e n d a s h)$,
3. centered asterisk ( $*$ ไtextasteriskcentered) , and
4. centered dot (•ttextperiodcentered).

The optional $\langle m a r k\rangle$ argument can be used to specify the marker for the list items in a particular list. If for some reason you wanted to use a pilcrow symbol as the item marker for a particular list you could do
$\backslash$ begin\{itemize\} [\P]
- ...
\begin\{enumerate } \} [ \langle \text { style } \rangle ] \text {
- ... \end\{enumerate } \}


The normal markers for, say, the third item in an enumerate list are: 3., c., iii., and C. The optional $\langle$ style $\rangle$ argument can be used to specify the style used to typeset the item counter. An occurrence of one of the special characters A, a, I, i or 1 in $\langle$ style $\rangle$ specifies that the counter will be typeset using uppercase letters (A), lowercase letters (a), uppercase Roman numerals (I), lowercase Roman numerals (i), or arabic numerals (1). These characters may be surrounded by any LaTeX commands or characters, but if so the special characters must be put inside braces (e.g., \{a\}) if they are to be considered as ordinary characters instead of as special styling characters. For example, to have the counter typeset as a lowercase Roman numeral followed by a single parenthesis

```
\begin{enumerate}[i)]
```

\tightlists \defaultlists

The normal LaTeX description, itemize and enumerate lists have an open look about them when they are typeset as there is significant vertical space between the items in the lists. After the declaration \tightlists is issued, the extra vertical spacing between the list items is deleted. The open list appearance is used after the \defaultlists declaration is issued. These declarations, if used, must come before the relevant list environment(s).

The class initially sets \defaultlists. If you had noticed that the lists in this chapter have a different appearance than those in earlier chapters (or even if you hadn't noticed) then that is because the declaration \tightlists was put at the start of this chapter.
\firmlist \tightlist

The command \firmlist or \tightlist can be used immediately after the start of a list environment to reduce the vertical space within that list. The \tightlist removes all the spaces while the \firmlist produces a list that still has some space but not as much as in an ordinary list.

$$
\text { \begin } \{ \text { list } \} \{ \langle \text { default-label } \rangle \} \{ \langle \text { code } \rangle \} \text { items \end\{list } \}}
$$

LaTeX's list environments are defined in terms of a general list environment; some other environments, such as the quote, quotation and adjustwidth are also defined in terms of a list. Figure 9.2 shows the parameters controlling the layout of the list environment.

The list environment takes two arguments. The $\langle$ default-label $\rangle$ argument is the code that should be used when the - macro is used without its optional 〈label〉 argument. For lists like enumerate this is specified but often it is left empty, such as for the adjustwidth environment.


The $\langle$ code $\rangle$ argument is typically used for setting the particular values of the list layout parameters. When defining your own types of lists it is advisable to set each of the parameters unless you know that the default values are suitable for your purposes. These parameters can all be modified with either the \setlength or \addtolength commands.

As an example, here is the specification for a description-like list that uses an italic rather than bold font for the items, and is somewhat tighter than the normal description list.

```
%%%%%% An italic and tighter description environment
\newcommand{\itlabel}[1]{\hspace\labelsep\normalfont\itshape #1}
\newenvironment{itdesc}{%
 \list{}{%
 \setlength{\labelsep}{0.5em}
 \setlength{\itemindent}{0pt}
 \setlength{\leftmargin}{\parindent}
 \setlength{\labelwidth}{\leftmargin}
 \addtolength{\labelwidth}{-\labelsep}
```



Figure 9.2: The layout parameters for general lists

```
\setlength{\listparindent}{\parindent}
\setlength{\parsep}{\parskip}
\setlength{\itemsep}{0.5\onelineskip}
\let\makelabel\itlabel}}{\endlist}
This gets used like any other list:
\begin{itdesc}
\item[label]
\end{itdesc}
```

Here is another kind of list called aglossary that could be used for a glossary or other similar kind of listing.
\% Glossary list
\newenvironment\{aglossary\}\%
\{\begin\{list\}\{\}\% empty label }
$\{\backslash$ setlength $\{\backslash$ topsep $\}\{\backslash$ baselineskip $\}$
\setlength\{\partopsep\}\{0pt\}
\setlength\{- sep\}\{0.5\baselineskip\}
                                    \setlength\{\parsep\}\{0pt\}
                                    \setlength\{\leftmargin\}\{2em\}
                                    \setlength\{\rightmargin\}\{0em\}
                                    \setlength\{\listparindent\}\{1em\}
                                    \setlength\{
- indent\}\{0em\}
                                    \setlength\{\labelwidth\}\{0em\}
                                    \setlength\{\labelsep\}\{2em\}\}\}\%
\{\end\{list\}\} }
\newcommand\{\gloss\}[1]\{
- \mbox\{\}\\\\nopagebreak\}
In this case it gets used like this
\begin\{aglossary\} }
\gloss\{TERM 1\} definition
\gloss\{TERM 2\} ...
\end\{aglossary\} }
\zerotrivseps \restoretrivseps \savetrivseps


Several environments, such as center, are defined in terms of a trivlist (a very simple list form). There is vertical space before and after such an environment. If you don't want this, then the declaration \zerotrivseps eliminates such spaces. You can think of it being defined like:

```
\newcommand*{\zerotrivseps}{%
 \setlength{\topsep}{0pt}%
```

    \setlength\{\partopsep\}\{0pt\}\}
    To restore the spacing call the \restoretrivseps declaration. The command \savetrivseps stores the \topsep and \partopsep values, and \restoretrivseps sets them to whatever values were stored. The class itself calls \savetrivseps to keep the default values.

## 10 Tops and tails

This chapter uses the section chapterstyle.

### 10.1 Introduction

The following discussions are focussed on the elements at the start and end of a document; the Table of Contents at the start and the Index at the end. The functionality described is equivalent to the combination of the tocloft and tocbibind packages Wil01i, Wil01h

In the standard classes the typographic design of the Table of Contents (ToC), the List of Figures (LoF) and List of Tables (LoT) is fixed or, more precisely, it is buried within the class definitions.

### 10.2 LaTeX's ToC methods

This is a general description of how LaTeX does the processing for a Table of Contents (ToC). As the processing for List of Figures (LoF) and List of Tables (LoT) is similar I will just discuss the ToC.

First of all, remember that each sectional division has an associated level as listed in Table 8.1 on page 82 LaTeX will not typeset an entry in the ToC unless the value of the tocdepth counter is equal to or greater than the level of the entry.

```
\maxtocdepth{\langlesecname\rangle}
\settocdepth{\langle secname\rangle}
```

The memoir class \maxtocdepth command sets the maximum allowable value for the tocdepth counter. If used, the command must appear before the \tableof contents command. By default, the class sets \maxtocdepth\{section\}.

The memoir class command \settocdepth is somewhat analagous to the \setsecnumdepth command described in $\$ 8.4$. It sets the value of the tocdepth counter and puts it into the ToC to (temporarily) modify what will appear. The command can only be used after the preamble but may be used before calling the \tableofcontents. The \settocdepth and \maxtocdepth macros are from the tocvsec2 package Wil99b.

$$
\text { \addcontentsline }\{\langle\text { file }\rangle\}\{\langle\text { kind }\rangle\}\{\langle\text { text }\rangle\}
$$



Figure 10.1: Layout of a ToC (LoF, LoT) entry

LaTeX generates a .toc file if the document contains a \tableof contents command. The sectioning commands ${ }^{1}$ put entries into the . toc file by calling the LaTeX \addcontentsline command, where $\langle$ file $\rangle$ is the file extension (e.g., toc), $\langle k i n d\rangle$ is the kind of entry (e.g., section or subsection), and $\langle t e x t\rangle$ is the (numbered) title text. In the cases where there is a number, the $\langle$ title $\rangle$ argument is given in the form $\{\backslash$ numberline\{number\} title-text $\}$.

## \phantomsection

NOTE: The hyperref package Rahtz02 appears to dislike authors using \addcontentsline. To get it to work properly with hyperref you normally have to put \phantomsection (a macro defined within this class and the hyperref package) immediately before \addcontentsline.

$$
\text { \contentsline }\{\langle\text { kind }\rangle\}\{\langle\text { text }\rangle\}\{\langle\text { page }\rangle\}
$$

The \addcontentsline command writes an entry to the given file in the form:
\contentsline $\{\langle$ kind $\rangle\}\{\langle$ text $\rangle\}\{\langle$ page $\rangle\}$
where $\langle p a g e\rangle$ is the page number. For each $\langle k i n d\rangle$, LaTeX provides a command:
\1@kind\{ $\langle$ title $\rangle\}\{\langle$ page $\rangle\}$
which performs the actual typesetting of the \contentsline entry.

```
\@pnumwidth{\langlelength\rangle}
\@tocrmarg{\langlelength\rangle}
\@dotsep{\langlenumber \}
```

The general layout of a typeset entry is illustrated in Figure 10.1. There are three internal LaTeX commands that are used in the typesetting. The page number is typeset flushright

[^22]Table 10.1: Indents and Numwidths (in ems)

| Entry | Level | Standard |  | memoir class |  |
| :--- | :---: | ---: | ---: | ---: | ---: |
|  |  | indent | numwidth | indent | numwidth |
| part | -1 | 0 | - | 0 | - |
| chapter | 0 | 0 | 1.5 | 0 | 1.5 |
| section | 1 | 1.5 | 2.3 | 1.5 | 2.3 |
| subsection | 2 | 3.8 | 3.2 | 3.8 | 3.2 |
| subsubsection | 3 | 7.0 | 4.1 | 7.0 | 4.1 |
| paragraph | 4 | 10.0 | 5.0 | 10.0 | 5.0 |
| subparagraph | 5 | 12.0 | 6.0 | 12.0 | 6.0 |
| figure/table | $(1)$ | 1.5 | 2.3 | 0 | 1.5 |
| subfigure/table | $(2)$ | - | - | 1.5 | 2.3 |

in a box of width \@pnumwidth, and the box is at the righthand margin. If the page number is too long to fit into the box it will stick out into the righthand margin. The title text is indented from the righthand margin by an amount given by \@tocrmarg. Note that \@tocrmarg should be greater than \@pnumwidth. Some entries are typeset with a dotted leader between the end of the title title text and the righthand margin indentation. The distance, in math units ${ }^{2}$ between the dots in the leader is given by the value of \@dotsep. In the standard classes the same values are used for the ToC, LoF and the LoT.

The standard values for these internal commands are:

- $\backslash @$ pnumwidth $=1.55 \mathrm{em}$
- \@tocrmarg $=2.55 \mathrm{em}$
- $\backslash$ @dotsep $=4.5$

The values can be changed by using 

Dotted leaders are not available for Part and Chapter ToC entries

$$
\text { \numberline\{ }\langle\text { number }\rangle\}
$$

Each \l@kind macro is responsible for setting the general indent from the lefthand margin, and the numwidth. The \numberline macro is responsible for typesetting the number flushleft in a box of width numwidth. If the number is too long for the box then it will protrude into the title text. The title text is indented by (indent + numwidth $)$ from the lefthand margin. That is, the title text is typeset in a block of width (\linewidth - indent - numwidth - \@tocrmarg).

Table 10.1 lists the standard values for the indent and numwidth. There is no explicit numwidth for a part; instead a gap of 1 em is put between the number and the title text. Note that for a sectioning command the values depend on whether or not the document class provides the \chapter command. Also, which somewhat surprises me, the table and figure entries are all indented.

$$
\text { \@dottedtocline\{〈level }\rangle\}\{\langle\text { indent }\rangle\}\{\langle\text { numwidth }\rangle\}
$$

[^23]Most of the \l＠kind commands are defined in terms of the \＠dottedtocline command． This command takes three arguments：the 〈level〉 argument is the level as shown in Ta－ ble 10．1，and $\langle$ indent $\rangle$ and $\langle$ numwidth $\rangle$ are the indent and numwidth as illustrated in Fig－ ure 10.1 For example，one definition of the \l＠section command is： \newcommand＊\｛\1＠section\}\{\@dottedtocline\{1\}\{1.5em\}\{2.3em\}\}
If it is necessary to change the default typesetting of the entries，then it is usually necessary to change these definitions，but this class gives you handles to easily alter things without having to know the LaTeX internals．

You can use the \addcontentsline command to add \contentsline commands to a file．

## \addtocontents\｛〈file $\rangle\}\{\langle$ text $\rangle\}$

LaTeX also provides the \addtocontents command that will insert $\langle$ text $\rangle$ into $\langle$ file $\rangle$ ．You can use this for adding extra text and／or macros into the file，for processing when the file is typeset by \tableof contents（or whatever other command is used for $\langle f i l e\rangle$ processing， such as \listoftables for a ．lot file）．

As \addcontentsline and \addtocontents write their arguments to a file，any fragile commands used in their arguments must be \protected．

You can make certain adjustments to the ToC etc．，layout by modifying some of the above macros．Some examples are：
－If your page numbers stick out into the righthand margin

> }\{3 \mathrm{em}\}\)
> \{4em
but using lengths appropriate to your document．
－To have the（sectional）titles in the ToC，etc．，typeset ragged right with no hyphen－ ation
\{2.55em plus1fil\}
where the value 2.55 em can be changed for whatever margin space you want．
－The dots in the leaders can be eliminated by increasing \＠dotsep to a large value：

$$
\text { \renewcommand }\{\backslash @ d o t s e p\}\{10000\}
$$

－To have dotted leaders in your ToC and LoF but not in your LoT：

```
\tableofcontents
\makeatletter \renewcommand{\@dotsep}{10000} \makeatother
\listoftables
\makeatletter \renewcommand{\@dotsep}{4.5} \makeatother
\listoffigures
```

－To add a horizontal line across the whole width of the ToC below an entry for a Part：
\part\{Part title\}
\addtocontents\{toc\}\{\protect $\backslash \operatorname{mbox}\} \backslash$ protect $\backslash$ hrulefill $\backslash$ par\}

As said earlier any fragile commands in \addtocontents and \addcontentsline their arguments must be protected by preceding each fragile command with \protect．The result of the example above would be the following two lines in the ．toc file（assuming that it is the second Part and is on page 34）：

```
 \contentsline {part}{II\hspace {1em}Part title}{34}
 \mbox {}\hrulefill \par
```

If the $\backslash$ protects were not used, then the second line would instead be:
\unhbox \voidb@x \hbox \{\}\unhbox \voidb@x \leaders \hrule \hfill \kern \z@ \par

- To change the level of entries printed in the ToC (for example when normally subsections are listed in the ToC but for appendices only the main title is required)

```
\appendix
\settocdepth{chapter}
\chapter{First appendix}
...
```

Remember, if you are modifying any command that includes an @ sign then this must be done in either a . sty file or if in the document itself it must be surrounded by \makeatletter and \makeatother. For example, if you want to modify \@dotsep in the preamble to your document you have to do it like this:

```
\makeatletter
\renewcommand{\@dotsep}{9.0}
\makeatother
```


### 10.3 The class ToC methods

The class provides various means of changing the look of the ToC, etc., without having to go through some of the above.

```
\tableofcontents \tableofcontents*
\listoffigures \listoffigures*
\listoftables \listoftables*
```

The ToC, LoF, and LoT are printed at the point in the document where these commands are called, as per normal LaTeX. However, there are two differences between the standard LaTeX behaviour and the behaviour with this class. In the standard LaTeX classes that have \chapter headings, the ToC, LoF and LoT each appear on a new page. With this class they do not necessarily start new pages; if you want them to be on new pages you may have to specifically issue an appropriate command beforehand. For example:

```
\clearpage
\tableofcontents
\clearpage
\listoftables
```

Also, the unstarred versions of the commands put their headings into the ToC, while the starred versions do not.

## Changing the titles

Commands are provided for controlling the appearance of the ToC , LoF and LoT titles.
\contentsname \listfigurename \listtablename

Following LaTeX custom, the title texts are the values of the \contentsname, \listfigurename and \listtablename commands.

The commands for controlling the typesetting of the ToC, LoF and LoT titles all follow a similar pattern So for convenience (certainly mine, and hopefully yours) in the following descriptions I will use Z to stand for 'toc' or 'lof' or 'lot'. For example, \Zmark stands for \tocmark or \lofmark or \lotmark.

The code for typesetting the ToC title looks like:
\tocheadstart
\printtoctitle\{\contentsname\}
\tocmark
\thispagestyle\{chapter\}
\aftertoctitle
where the macros are described below.

## \Zheadstart

This macro is called before the title is actually printed. Its default definition is \newcommand\{ \Zheadstart\}\{\chapterheadstart\}

```
\printZtitle{\langletitle\rangle}
```

The title is typeset via \printZtitle, which defaults to using \printchaptertitle for the actual typesetting.

```
\Zmark
```

These macros sets the appearance of the running heads on the ToC, LoF, and LoT pages. The default definition is equivalent to:
\newcommmand\{\Zmark\}\{\@mkboth\{\....name\}\{\....name\}\}
where \. . .name is \contentsname or \listfigurename or \listtablename as appropriate. You probably don't need to change these, and in any case they may well be changed by the particular \pagestyle in use.

## \afterZtitle

This macro is called after the title is typeset and by default it is defined to be \afterchaptertitle.
Essentially, the ToC, LoF and LoT titles use the same format as the chapter titles, and will be typeset according to the current chapterstyle. You can modify their appearance by either using a different chapterstyle for them than for the actual chapters, or by changing some of the macros. As examples:

- Doing
[1]\{\hfill\Large\itshape \#1\}
will print the title right justified in a Large italic font.
- For a Large bold centered title you can do

[^24]
## - Writing

will result in the first page of the listing using the empty pagestyle instead of the default chapter pagestyle.

- Doing
\{\%
$\backslash$ par $\backslash$ nobreak \mbox\{\}\hfill\{\normalfont Page\}\par\nobreak\}
will put the word 'Page' flushright on the line following the title.


## Typesetting the entries

Commands are also provided to enable finer control over the typesetting of the different kinds of entries. The parameters defining the default layout of the entries are illustrated as part of the layouts package Wil99a or in GMS94, page 34], and are repeated in Figure 10.1

$$
\backslash \operatorname{cftdot}\{\langle t e x t\rangle\}
$$

In the default ToC typsetting only the more minor entries have dotted leader lines between the sectioning title and the page number. The class provides for general leaders for all entries. The 'dot' in a leader is given by the value of \cftdot. Its default definition is \newcommand\{\cftdot\}\{.\} which gives the default dotted leader. By changing \cftdot you can use symbols other than a period in the leader. For example
$\backslash$ renewcommand $\{\backslash \operatorname{cftdot}\}\{\backslash$ ensuremath $\{\backslash$ ast $\}\}$
will result in a dotted leader using asterisks as the symbol.

```
\cftdotsep
\cftnodots
```

Each kind of entry can control the separation between the dots in its leader (see below). For consistency though, all dotted leaders should use the same spacing. The macro \cftdotsep specifies the default spacing. However, if the separation is too large then no dots will be actually typeset. The macro \cftnodots is a separation value that is 'too large'.

```
\setpnumwidth{\length\rangle}
\setrmarg{\langlelength\rangle}
```

The page numbers are typeset in a fixed width box. The command \setpnumwidth can be used to change the width of the box (LaTeX 's internal \@pnumwidth). The title texts will end before reaching the righthand margin. \setrmarg can be used to set this distance (LaTeX 's internal \@tocrmarg). Note that the length used in \setrmarg should be greater than the length set in \setpnumwidth. These values should remain constant in any given document.

This manual requires more space for the page numbers than the default, so the following was set in the preamble:
\setpnumwidth\{2.55em\}
\setrmarg\{3.55em\}

## \cftparskip

Normally the \parskip in the ToC, etc., is zero. This may be changed by changing the length \cftparskip. Note that the current value of \cftparskip is used for the ToC, LoF and LoT, but you can change the value before calling \tableofcontents or \listoffigures or \listoftables if one or other of these should have different values (which is not a good idea).

Again for convenience, in the following I will use X to stand for any of the following:

- part for \part titles
- chapter for \chapter titles
- section for \section titles
- subsection for \subsection titles
- subsubsection for \subsubsection titles
- paragraph for \paragraph titles
- subparagraph for \subparagraph titles
- figure for figure \caption titles
- subfigure for subfigure \caption titles
- table for table \caption titles
- subtable for subtable \caption titles


## \cftchapterbreak

When \l@chapter starts to typeset a \chapter entry in the ToC the first thing it does is to call the macro \cftchapterbreak. This is defined as:
\newcommand\{\cftchapterbreak\}\{\addpenalty\{-\@highpenalty\}\}
which encourages a page break before rather than after the entry. As usual, you can change \cftchapterbreak to do other things that you feel might be useful.

```
\cftbeforeXskip
```

This length controls the vertical space before an entry. It can be changed by using \setlength.

## \cftXindent

This length controls the indentation of an entry from the left margin (indent in Figure 10.1). It can be changed using \setlength.
\cftXnumwidth

This length controls the space allowed for typesetting title numbers (numwidth in Figure 10.1. It can be changed using \setlength. Second and subsequent lines of a multiline title will be indented by this amount.

The remaining commands are related to the specifics of typesetting an entry. This is a simplified pseudo-code version for the typesetting of numbered and unnumbered entries.

## $\{\backslash c f t X f o n t\{\backslash c f t X p r e s n u m ~ S N U M \backslash c f t X a f t e r s n u m \backslash h f i l\}$ \cftXaftersnumb TITLE\} $\{\backslash c f t X l e a d e r\}\{\backslash c f t X p a g e f o n t$ PAGE\}\cftXafterpnum $\backslash$ par

$\{\backslash c f t X f o n t$ TITLE\}\{\cftXXleader\}\{\cftXXagefont PAGE\}\cftXafterpnum $\backslash$ par where SNUM is the section number, TITLE is the title text and PAGE is the page number. In the numbered entry the pseudo-code \{\cftXpresnum SNUM $\backslash c f t a f t e r s n u m \ h f i l\}$ is typeset within a box of width \cftXnumwidth.

## \cftXfont

This controls the appearance of the title (and its preceding number, if any). It may be changed using 

```
\cftXpresnum \cftXaftersnum \cftXaftersnumb
```

The section number is typeset within a box of width \cftXnumwidth. Within the box the macro \cftXpresnum is first called, then the number is typeset, and the \cftXaftersnum macro is called after the number is typeset. The last command within the box is $\backslash \mathrm{hfil}$ to make the box contents flushleft. After the box is typeset the \cftXaftersnumb macro is called before typesetting the title text. All three of these can be changed by 

```
\partnumberline{\langlenum\rangle}
\chapternumberline{\langlenum\rangle}
```

In the ToC , the macros \partnumberline and \chapternumberline are responsible respectively for typesetting the \part and \chapter numbers. Internally they use \cftXpresnum, \cftXaftersnum and \cftaftersnumb as above. If you do not want, say, the \chapter number to appear you can do:
 [1] \{\}
NOTE: Because the hyperref package Rahtz02 does not understand the $\backslash$ partnumberline and \chapternumberline commands, if you use the hyperref package you will also have to use the memhfixc package, which comes with memoir.

```
\cftXleader
\cftXdotsep
```

\cftXleader defines the leader between the title and the page number; it can be changed by 

```
\cftXpagefont
```

This defines the font to be used for typesetting the page number．It can be changed by 

```
\cftXafterpnum
```

This macro is called after the page number has been typeset．Its default is to do nothing． It can be changed by 

$$
\text { \cftsetindents }\{\langle\text { entry }\rangle\}\{\langle\text { indent }\rangle\}\{\langle\text { numwidth }\rangle\}
$$

The command \cftsetindents sets the $\langle e n t r y\rangle$＇s indent to the length $\langle i n d e n t\rangle$ and its numwidth to the length $\langle$ numwidth〉．The 〈entry〉 argument is the name of one of the standard entries（e．g．，subsection）or the name of entry that has been defined within the document．For example
\cftsetindents\｛figure\}\{0em\}\{1.5em\}
will make figure entries left justified．
This manual requires more space for section numbers in the ToC than the default（which allows for three digits）．Consequently the preamble contains the following：
\cftsetindents\｛section\}\{1.5em\}\{3.0em\}
\cftsetindents\｛subsection\}\{4.5em\}\{3.9em\}
\cftsetindents\｛subsubsection\}\{8.4em\}\{4.8em\}
\cftsetindents\｛paragraph\}\{10.7em\}\{5.7em\}
\cftsetindents\｛subparagraph\}\{12.7em\}\{6.7em\}
Note that changing the indents at one level implies that any lower level indents should be changed as well．

Various effects can be achieved by changing the definitions of \cftXfont，\cftXaftersnum， \cftXaftersnumb，\cftXleader and \cftXafterpnum，either singly or in combination．For the sake of some examples，assume that we have the following initial definitions

```
\newcommand{\cftXfont}{}
\newcommand{\cftXaftersnum}{}
\newcommand{\cftXaftersnumb}{}
\newcommand{\cftXleader}{\cftdotfill{\cftXdotsep}}
\newcommand{\cftXdotsep}{\cftdotsep}
\newcommand{\cftXpagefont}{}
\newcommand{\cftXafterpnum}{}
```

（Note that the same font should be used for the title，leader and page number to provide a coherent appearance）．
－To eliminate the dots in the leader：
\{\cftnodots\}
－To put something（e．g．，a name）before the title（number）： \{SOMETHING \}
－To add a colon after the section number：
\{:\}
－To put something before the title number，add a colon after the the title number，set everything in bold font，and start the title text on the following line：

```
\renewcommand{\cftXfont}{\bfseries}
\renewcommand{\cftXleader}{\bfseries\cftdotfill{\cftXdotsep}}
\renewcommand{\cftXpagefont}{\bfseries}
\renewcommand{\cftXpresnum}{SOMETHING }
\renewcommand{\cftXaftersnum}{:}
\renewcommand{\cftXaftersnumb}{\\\}
```

If you are adding text in the number box in addition to the number, then you will probably have to increase the width of the box so that multiline titles have a neat vertical alignment; changing box widths usually implies that the indents will require modification as well. One possible method of adjusting the box width for the above example is:

```
\newlength{\mylen} % a "scratch" length
\settowidth{\mylen}{\bfseries\cftXpresnum\cftXaftersnum}
\addtolength{\cftXnumwidth}{\mylen} % add the extra space
```

- To set the section numbers flushright:

```
\setlength{\mylen}{0.5em} % extra space at end of number
\renewcommand{\cftXpresnum}{\hfill} % note the double ' l'
\renewcommand{\cftXaftersnum}{\hspace*{\mylen}}
\addtolength{\cftXnumwidth}{\mylen}
```

In the above, the added initial $\backslash h f i l l$ in the box overrides the final $\backslash h f i l$ in the box, thus shifting everything to the right hand end of the box. The extra space is so that the number is not typeset immediately at the left of the title text.

- To set the entry ragged left (but this only looks good for single line titles):
\{\hfill\bfseries\}
\{\}
- To set the page number immediately after the entry text instead of at the righthand margin:
\{\}
\{\cftparfillskip\}


## \cftparfillskip

By default the \parfillskip value is locally set to fill up the last line of a paragraph. Just changing \cftXleader puts horrible interword spaces into the last line of the title. The \cftparfillskip command is provided just so that the above effect can be achieved.

```
\cftpagenumbersoff{\langleentry\rangle}
\cftpagenumberson{\langleentry\rangle}
```

The command \cftpagenumbersoff will eliminate the page numbers for $\langle e n t r y\rangle$ in the listing, where $\langle$ entry $\rangle$ is the name of one of the standard kinds of entries (e.g., subsection, or figure) or the name of a new entry defined in the document.

The command \cftpagenumberson reverses the effect of a corresponding \cftpagenumbersoff for $\langle$ entry $\rangle$.

One question that appeared on the comp.text.tex newsgroup asked how to get the titles of Appendices list in the ToC without page numbers. Here is a simple way of doing it.

```
\appendix
\addtocontents{toc}{\cftpagenumbersoff{chapter}}
\chapter{First appendix}
```

If there are other chapter type headings to go into the ToC after the appendices (perhaps a bibliography or an index), then it will be necessary to do a similar
\addtocontents\{toc\}\{\cftpagenumberson\{chapter\}\}
after the appendices to restore the page numbering in the ToC .
At this point, I leave it up to your ingenuity as to other effects that you can achieve. However, if you come up with further examples, let me know for possible inclusion in a later version of this document.

### 10.4 New list of. . . and entries

## \newlistof $\{\langle$ listofcom $\rangle\}\{\langle$ ext $\rangle\}\{\langle$ listofname $\rangle\}$

The command \newlistof creates a new 'List of. ..', and assorted commands to go along with it. The first argument, $\langle l i s t o f c o m\rangle$ is used to define a new command called \listof com which can then be used like \listoffigures to typeset the 'List of. . .'. The $\langle e x t\rangle$ argument is the file extension to be used for the new listing. The last argument, $\langle$ listofname $\rangle$ is the title for the 'List of...'. Unstarred and starred versions of \listofcom are created. The unstarred version, \listofcom, will add 〈listofname〉 to the ToC, while the starred version, $\backslash$ listof com*, makes no entry in the ToC.

As an example:
\newcommand\{\listanswername\}\{List of Answers\}
\newlistof $\{$ listofanswers\}\{ans\}\{<br>istanswername\}
will create a new \listofanswers commmand that can be used to typeset a listing of answers under the title \listanswername, where the answer titles are in a .ans file. It is up to the author of the document to specify the 'answer' code for the answers in the document. For example:

```
\newcounter{answer}[chapter]
\renewcommand{\theanswer}{\thechapter.\arabic{answer}}
\newcommand{\answer}[1]{
 \refstepcounter{answer}
 \par\noindent\textbf{Answer \theanswer. #1}
 \addcontentsline{ans}{answer}{\protect\numberline{\theanswer}#1}\par}
```

which, when used like:
\answer\{Hard\} The ···
will print as:

## Answer 1. Hard <br> The ...

As mentioned above, the \newlistof command creates several new commands in addition to \listofcom, most of which you should now be familiar with. For convenience, assume that $\backslash$ newlistof $\{\ldots\}\{\mathrm{Z}\}\{\ldots\}$ has been issued so that Z is the new file extension and corresponds to the Z in $\$ 10.3$ Then in addition to \listofcom the following new commands will be made available.

The four commands, \Zmark, \Zheadstart, \printZtitle, and \afterZtitle, are analagous to the commands of the same names described in $\$ 10.3$ (internally the class uses the \newlistof macro to define the ToC, LoF and LoT). In particular the default definition of $\backslash$ Zmark is equivalent to:
\newcommand\{\Zmark\}\{\@mkboth\{listofname\}\{listofname\}\}
However, this may well be altered by the particular \pagestyle in use.

## Zdepth

The counter Zdepth is analagous to the standard tocdepth counter, in that it specifies that entries in the new listing should not be typeset if their numbering level is greater than Zdepth. The default definition is equivalent to
\setcounter\{Zdepth\}\{1\}

```
\insertchapterspace
```

$\backslash$ addtodef $\{\langle$ macro $\rangle\}\{\langle$ prepend $\rangle\rangle\}\{\langle$ append $\rangle\}$
Remember that the \chapter command uses \insertchapterspace to insert vertical spaces into the LoF and LoT. If you want similar spaces added to your new listing then you have to modify \insertchapterspace. The easiest way to do this is via the \addtodef macro, like:
\addtodef $\{$ \insertchapterspaces\}\{\}\%
\{\addtocontents\{ans\}\{\protect\addvspace\{10pt\}\}\}
The \addtodef macro is described later in $\$ 17.9$.
The other part of creating a new 'List of. ..', is to specify the formatting of the entries, i.e., define an appropriate \l@kind macro.

```
\newlistentry[\langlewithin\rangle]{\langlecntr\rangle}{\langleext\rangle}{\langlelevel-1\rangle}
```

The command \newlistentry creates the commands necessary for typesetting an entry in a 'List of. . .'. The first required argument, $\langle$ cntr $\rangle$ is used to define a new counter called cntr, unless cntr is already defined. The optional 〈within〉 argument can be used so that cntr gets reset to one every time the counter called within is changed. That is, the first two arguments when cntr is not already defined, are equivalent to calling \newcounter $\{\langle$ cntr $\rangle\}$ [ $\langle$ within $\rangle]$. If cntr is already defined, \newcounter is not called. cntr is used for the number that goes along with the title of the entry.

The second required argument, $\langle e x t\rangle$, is the file extension for the entry listing. The last argument, $\langle$ level- 1$\rangle$, is a number specifying the numbering level minus one, of the entry in a listing.

Calling \newlistentry creates several new commands. Assuming that it is called as $\backslash$ newlistentry [within] $\{\mathrm{X}\}\{\mathrm{Z}\}\{\mathrm{N}\}$, where X and Z are similar to the previous uses of them (e.g., Z is the file extension), and N is an integer number, then the following commands are made available.

The set of commands \cftbeforeXskip, \cftXfont, \cftXpresnum, \cftXaftersnum, \cftXaftersnumb, \cftXleader, \cftXdotsep, \cftXpagefont, and \cftXafterpnum, are analagous to the commands of the same names described in $\$ 10.3$. Their default values are also as described earlier.

The default values of \cftXindent and \cftXnumwidth are set according to the value of the $\langle$ level- 1$\rangle$ argument (i.e., $N$ in this example). For $N=0$ the settings correspond to those for figures and tables, as listed in Table 10.1 for the memoir class. For $N=1$ the settings correspond to subfigures, and so on. For values of $N$ less than zero or greater than four, or for non-default values, use the $\backslash c f t s e t i n d e n t s ~ c o m m a n d ~ t o ~ s e t ~ t h e ~ v a l u e s . ~$
$\backslash 1 @ X$ is an internal command that typesets an entry in the list, and is defined in terms of the above $\backslash c f t * X *$ commands. It will not typeset an entry if $\backslash Z d e p t h$ is $N$ or less, where Z is the listing's file extension.

The command $\backslash$ the X prints the value of the X counter. It is initially defined so that it prints arabic numerals. If the optional $\langle$ within $\rangle$ argument is used, \theX is defined as
$\backslash$ renewcommand $\{\backslash$ theX $\}\{$ thewithin. $\backslash$ arabic $\{\mathrm{X}\}\}$
otherwise as
\{\backslash\) arabic $\{X\}\}$
As an example of the independent use of \newlistentry, the following will set up for sub-answers.

```
\newlistentry [answer] {subanswer}{1}
\renewcommand{\thesubanswer}{\theanswer.\alph{subanswer}}
\newcommand{\subanswer}[1]{
 \refstepcounter{subanswer}
 \par\textbf{\thesubanswer) #1}
 \addcontentsline{ans}{subanswer{\protect\numberline{\thesubanswer}#1}}
\setcounter{ansdepth}{2}
```

And then:
\answer\{Harder\} The ···
\subanswer\{Reformulate the problem\} It assists ···
will be typeset as:

## Answer 2. Harder

The ...
2.a) Reformulate the problem It assists ...

By default the answer entries will appear in the List of Answers listing (typeset by the \listofanswers command). In order to get the subanswers to appear, the \setcounter\{ansdepth\}\{2\} command was used above.

To turn off page numbering for the subanswers, do \cftpagenumbersoff\{subanswer\}

As another example of \newlistentry, suppose that an extra sectioning division below subparagraph is required, called subsubpara. The \subsubpara command itself can be defined via the LaTeX kernel \@startsection command. Also it is necessary to define a \subsubparamark macro, a new subsubpara counter, a \thesubsubpara macro and a \1@subsubpara macro. Using \newlistentry takes care of most of these as shown below (remember the caveats about commands with @ signs in them).

```
\newcommand{\subsubpara}{\@startsection{subpara}
 {6} % level
 {\parindent} % indent from left margin
 {3.25ex \@plus1ex \@minus .2ex} % skip above heading
 {-1em} runin heading with % 1em between title & text
 {\normalfont\normalsize\itshape} % italic number and title
```

```
}
\newlistentry [subparagraph] {subsubpara}{toc}{5}
\cftsetindents{subsubpara}{14.0em}{7.0em}
\newcommand*{\subsubparamark}[1]{} % gobble heading mark
```

Each 'List of...' uses a file to store the list entries, and these files must remain open for writing throughout the document processing. TeX has only a limited number of files that it can keep open, and this puts a limit on the number of listings that can be used. For a document that includes a ToC but no other extra ancilliary files (e.g., no index or bibliography output files) the maximum number of LoX's, including a LoF and LoT, is no more than about eleven. If you try and create too many new listings LaTeX will respond with the error message:

```
No room for a new write
```

If you get such a message the only recourse is to redesign your document.

## Example - plates

As has been mentioned earlier, some illustrations may be tipped in to a book. Often, these are called 'plates' if they are on glossy paper and the rest of the book is on ordinary paper. We can define a new kind of Listing for these.
\newcommand\{\listplatename\}\{Plates\}
\newlistof $\{1$ istofplates\}\{lop\}\{\listplatename\}
\newlistentry\{plate\}\{lop\}\{0\}
\cftpagenumbersoff\{plate\}
This code defines the \listofplates command to start the listing which will be titled 'Plates' from the \listplatename macro. The entry name is plate and the file extension is lop. As plate pages typically do not have printed folios, the \cftpagenumbersoff command has been used to prohibit page number printing in the listing.

If pages are tipped in, then they are put between a verso and a recto page. The afterpage package Car95 lets you specify something that should happen after the current page is finished. The next piece of code uses the package and its \afterpage macro to define two macros which let you specify something that is to be done after the next verso or recto page has been completed.
\newcommand\{\afternextverso\}[1]\{\%
\afterpage\{\ifodd\c@page \#1\else\afterpage\{\#1\}\fi\}\}
\newcommand\{\afternextrecto\}[1] \{\%
\afterpage\{\ifodd\c@page\afterpage\{\#1\}\else \#1\fi\}\}
The $\backslash$ pageref $\{\langle$ labelid $\rangle\}$ command typesets the page number corresponding to the location in the document where \label\{〈labelid $\rangle\}$ is specified. The following code defines two macros ${ }^{3}$ that print the page number before or after that given by $\backslash$ pageref.
\newcounter\{mempref\}
\newcommand\{\priorpageref\}[1] \{\%
\setcounter\{mempref\}\{\pageref\{\#1\}\}\addtocounter\{mempref\}\{-1\}\themempref\}
\newcommand\{\nextpageref\}[1]\{\%
\setcounter\{mempref\}\{\pageref \{\#1\}\}\addtocounter\{mempref\}\{1\}\themempref\}

[^25]With these preliminaries out of the way, we can use code like the following for handling a set of physically tipped in plates.

```
\afternextverso{\label{tip}
 \addtocontents{lop}{%
 Between pages \priorpageref{tip} and \pageref{tip}
 \par\vspace*{\baselineskip}}
 \addcontentsline{lop}{plate}{First plate}
 \addcontentsline{lop}{plate}{Second plate}
 ...
 \addcontentsline{lop}{plate}{Nth plate}
}
```

This starts off by waiting until the next recto page is started, which will be the page immediately after the plates, and then inserts the label tip. The \addtocontents macro puts its argument into the plate list lop file, indicating the page numbers before and after the set of plates. With the plates being physically added to the document it is not possible to use \caption, instead the \addcontentsline macros are used to add the plate titles to the lop file.

With a few modifications the code above can also form the basis for listing plates that are electronically tipped in but do not have printed folios or \captions.

### 10.5 Extras

Some old style novels, and even some modern text books, ${ }^{4}$ include a short synopsis of the contents of the chapter either immediately after the chapter heading or in the ToC , or in both places.

$$
\text { \chapterprecis }\{\langle\text { text }\rangle\}
$$

The command \chapterprecis prints its argument both at the point in the document where it is called, and also adds it to the .toc file. For example:

```
\chapter{} first chapter
\chapterprecis{Our hero is introduced; family tree; early days.}
```

\chapterprecishere\{ $\langle$ text $\rangle\}$
\chapterprecistoc $\{\langle$ text $\rangle\}$

The \chapterprecis command calls these two commands to print the $\langle t e x t\rangle$ in the document (the \chapterprecishere command) and to put it into the ToC (the \chapterprecistoc command). These can be used individually if required.

```
\prechapterprecis \postchapterprecis
```

[^26]The \chapterprecishere macro is intended for use immediately after a \chapter. The $\langle t e x t\rangle$ argument is typeset in italics in a quote environment. The macro's definition is:
\newcommand\{\chapterprecishere\} [1] \{\%
\prechapterprecis \#1 \postchapterprecis\}
where $\backslash$ prechapterprecis and $\backslash$ postchapterprecis are defined as:
\newcommand\{\prechapterprecis\}\{\%
\vspace*\{-2\baselineskip\}\%
\begin\{quote\} \normalfont\itshape\} }
\newcommand\{\postchapterprecis\}\{\end\{quote\}\} }
The \prechapterprecis and \postchapterprecis macros can be changed if another style of typesetting is required.
\precistoctext\{〈text $\rangle\}$ \precistocfont
The \chapterprecistoc macro puts the macro \precistoctext into the toc file. The default definition is
\DeclareRobustCommand\{\precistoctext\}[1]\{\%
$\{\backslash l e f t s k i p ~ \ c f t c h a p t e r i n d e n t \backslash r e l a x$
\advance\leftskip \cftchapternumwidth\relax
\rightskip \@tocrmarg\relax
\precistocfont \#1\par\}\}
Effectively, in the ToC \precistoctext typesets its argument like a chapter title using the \precistocfont (default \itshape).

Sometimes it may be desirable to make a change to the global parameters for an individual entry. For example, a figure might be placed on the end paper of a book (the inside of the front or back cover), and this needs to be placed in a LoF with the page number set as, say 'inside front cover'. If 'inside front cover' is typeset as an ordinary page number it will stick out into the margin. Therefore, the parameters for this particular entry need to be changed.

```
\cftlocalchange{\langleext\rangle}{\langlepnumwidth\rangle}{\langletocrmarg\rangle}
```

The command \cftlocalchange will write an entry into the file with extension $\langle e x t\rangle$ to reset the global \@pnumwidth and \@tocrmarg parameter lengths. The command should be called again after any special entry to reset the parameters back to their usual values. Any fragile commands used in the arguments must be protected.

```
\cftaddtitleline{\langleext\rangle}{\langlekind\rangle}{\langletext\rangle}{\langlepage\rangle}
\cftaddnumtitleline{\langleext\rangle}{\langlekind\rangle}{\langlenum\rangle}{\langletitle\rangle}{\langlepage\rangle}
```

The command \cftaddtitleline will write a \contentsline entry into $\langle e x t\rangle$ for a $\langle k i n d\rangle$ entry with title $\langle$ title $\rangle$ and page number $\langle p a g e\rangle$. Any fragile commands used in the arguments must be protected. That is, an entry is made of the form:
\contentsline\{kind\}\{title\}\{page\}
The command \cftaddnumtitleline is similar to \cftaddtitleline except that it also includes $\langle n u m\rangle$ as the argument to \numberline. That is, an entry is made of the form
\contentsline\{kind\}\{\numberline\{num\} title\}\{page\}
As an example of the use of these commands, noting that the default LaTeX values for \@pnumwidth and \@tocrmarg are 1.55 em and 2.55 em respectively, one might do the following for a figure on the frontispiece page.

```
this is the frontispiece page with no number
draw or import the picture (with no \caption)
\cftlocalchange{lof}{4em}{5em} % make pnumwidth big enough for
 % frontispiece and change margin
\cftaddtitleline{lof}{figure}{The title}{frontispiece}
\cftlocalchange{lof}{1.55em}{2.55em} % return to normal settings
\clearpage
```

Recall that a \caption command will put an entry in the . lof file, which is not wanted here. If a caption is required, then you can either craft one youself or, assuming that your general captions are not too exotic, use the \legend command (see later). If the illustration is numbered, use \cftaddnumtitleline instead of \cftaddtitleline.

### 10.6 Tails

The commands for producing a bibliography and an index are the same as for the standard classes, but there are two differences.

## Bibliography

```
\begin{thebibliography}{\langleexlabel\rangle}
\bibitem ...
\end{thebibliography}
\bibname
```

The bibliography is typeset within the thebibliography environment. This takes one required argument, 〈exlabel $\rangle$, which is a piece of text as wide as the widest label in the bibliography. The value of \bibname (default 'Bibliography') is used as the title.

```
\bibintoc \nobibintoc
```

The declaration \bibintoc will cause the thebibliography environment to add the title to the ToC, while the declaration \nobibintoc ensures that the title is not added to the ToC. The default is \bibintoc.

```
\prebibhook \postbibhook
```

The commands \prebibhook and postbibhook are called after typesetting the title of the bibliography and after typesetting the list of entries, respectively. By default, they are defined to do nothing. You may wish to use one or other of these to provide some general information about the bibliography. For example:

```
\renewcommand{\postbibhook}{%
CTAN is the Comprehensive TeX Archive Network and URLS for the
several CTAN mirrors can be found at \url{http://www.tug.org}.}
```

\setbiblabel\{〈style $\rangle\}$

The style of the labels marking the bibliographic entries can be set via \setbiblabel. The default definition is
\setbiblabel\{[\#1] \hfill\}
where \#1 is the citation mark position, which generates flushleft marks enclosed in square brackets. To have marks just followed by a dot
\setbiblabel\{\#1. \hfill\}
The definition of the thebibliography environment is:
\newenvironment \{thebibliography\}[1] \{\%
\bibsection
\begin\{bibitemlist\}\{\#1\}\}\{\end\{bibitemlist\}\postbibhook\} }

## \bibsection

The macro \bibsection defines the heading for the thebibliography environment; that is, everything before the actual list of bibliographic items starts. Its default definition is:

```
\newcommand{\bibsection}{%
 \chapter*{\bibname}
 \bibmark
 \ifnobibintoc\else
 \phantomsection
 \addcontentsline{toc}{chapter}{\bibname}
 \i
 \prebibhook}
```

To change the style of the heading for the bibliography, redefine $\backslash$ bibsection. For example, to have the bibliography typeset as a numbered section instead of a chapter, redefine \bibsection as:
\{\%

\section\{ $\backslash$ bibname\}

\prebibhook\}
If you use the natbib and/or the chapterbib packages Dal99, Ars01b] with the sectionbib option, then \bibsection is changed appropriately to typeset as a numbered section.

The jurabib package Ber02] redefines the thebibliography environment, providing its own methods for listing the items. However, the redefinition also eliminates the opportunity to add the Bibliography to the Table of Contents and to have some introductory text. To restore these to the class specification, put the following in your preamble after loading jurabib:
kslash\)renewcommand\{\bib@heading\}\{\bibsection\}$\backslash$makeatotherundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

However, thanks to the kindness of Jens Berger, if your version of jurabib is 0.6 or later then the fix is not required.

## \bibitemsep

The natbib package provides a length, \bibsep which can be used to alter the vertical spacing between the entries in the bibliography. Setting \bibsep to 0pt removes any extra space between the entries. The equivalent length provided by the class for changing the space between bibliography entries is \bibitemsep, which by default is set to the default value of - sep.


The bibliography is set as a list, and the spacing between the items is ( $\backslash$ bibitemsep + $\backslash$ parsep). To eliminate any extra vertical space do
\setlength\{ $\backslash$ bibitemsep\}\{-\parsep\}

## \biblistextra

A hook, called \biblistextra, is provided that is called at the end of the bibliography list setup. By default it does nothing but it can be used, for example, to set all bibliography entries flushleft by modify the list parameters as shown below.

```
\renewcommand{\biblistextra}{%
 \setlength{\leftmargin}{0pt}%
 \setlength{\itemindent}{\labelwidth}%
 \setlength{\itemindent}{\labelsep}%
}
```


## Index

The indexing commands have been significantly enhanced with respect to the standard classes and include the functionality provided by the makeidx, showidx and index packages Bra94, Jon95]; these packages should not be used.

In the standard classes the index is set in two columns.

```
\onecolindextrue
\onecolindexfalse
```

The declaration \onecolindexfalse, which is the default, causes any indexes to be set in two columns. The declaration \onecolindextrue causes any following indexes to be set in one column. This can be useful if, for example, you need an index of the first lines of poems.

```
\makeindex[\langlefile\rangle]
\printindex[\langlefile\rangle]
```

The macro \makeindex, which must be put in the preamble if it is used, opens an idx file, which by default is called jobname.idx, where jobname is the name of the main LaTeX source file. If the optional 〈file〉 argument is given then a file called file.idx will be opened instead. The macro \printindex reads an ind file called jobname.ind, which
should contain an theindex environment and the indexed items. If the optional $\langle$ file $\rangle$ argument is given then the file.ind file will be read. The MAKEINDEX program is often used to convert an idx file to an ind file.

```
\begin{theindex} entries \end{theindex}
\indexname
```

The index is typeset in two columns within the theindex environment. The index title is given by the current value of \indexname (default 'Index').

```
\indexintoc \noindexintoc
```

The declaration \indexintoc will cause the theindex environment to add the title to the ToC, while the declaration \noindexintoc ensures that the title is not added to the ToC. The default is \indexintoc.

```
\indexcolsep
\indexrule
```

The length \indexcolsep is the width of the gutter between the two index columns. Its default value is 35 pt . The length \indexrule, default value 0 pt , is the thickness of a vertical rule separating the two columns.

```
\preindexhook
```

The macro \preindexhook is called after the title is typeset and before the twocolumn index listing starts. By default it does nothing but can be changed. For example

```
\renewcommand{\preindexhook}{Bold page numbers are used to indicate
```

the main reference for an entry.\}

```
\index[\langlefile\rangle]{\langleitem\rangle}
\specialindex{\langle file\rangle}{\langle<counter }\rangle}{\langle\mathrm{ item }\rangle
```

The macro \index writes its $\langle$ item $\rangle$ argument to an idx file. If the optional $\langle$ file $\rangle$ argument is given then it will write to file.idx otherwise it writes to jobname.idx. The page for the $\langle i t e m\rangle$ is also written to the idx file. The \specialindex macro writes its $\langle$ item $\rangle$ argument to the file.idx and also writes the page number (in parentheses) and the value of the $\langle$ counter $\rangle$. This means that indexing can be with respect to something other than page numbers. However, if the hyperref package is used the special index links will be to pages even though they appear to be with respect to the 〈counter $\rangle$; for example, if figure numbers are used as the index reference the hyperref link will be to the page where the figure appears and not the figure itself.

```
\see{\langleitem\rangle} \seename
\seealso{\langleitems\rangle} \alsoname
```

The macro \see can be used in an \index command to tell the reader to 'see 〈item〉' instead of printing a page number. Likewise the \seealso macro directs the reader to 'see also $\langle\text { items }\rangle^{\prime}$ '. For example:
\index\{Alf|see\{Alfred\}\}
\index\{Frederick|seealso\{Fred, Rick\}\}
The actual values for 'see' and 'see also' are given by the \seename and \alsoname macros whose default definitions are:

```
\newcommand{\seename}{see}
\newcommand{\alsoname}{see also}
```

```
\reportnoidxfilefalse
\reportnoidxfiletrue
```

Following the declaration \reportnoidxfilefalse, which is the default, LaTeX will silently pass over attempts to use an idx file which has not been declared via \makeindex. After the declaration \reportnoidxfiletrue LaTeX will whinge about any attempts to write to an unopened file.

```
\showindexmarktrue
\showindexmarkfalse
```

After the declaration \showindexmarktrue (practically) all \index and \specialindex $\langle$ item $\rangle$ arguments are listed in the margin of the page on which the index command is issued. The default is \showindexmarkfalse.

## Indexing and the natbib package

The natbib package Dal99 will make an index of citations if \citeindextrue is put in the preamble after the natbib package is called for.

```
\citeindexfile
```

The name of the file for the citation index is stored in the macro .Thisisinitiallydefinedas:\newcommand$\{\backslash$citeindexfile$\}\{\backslashj$jobname$\}$Thatis,thecitationentrieswillbewrittentothedefaultidxfile.Thismaybenotwhatyouwantsoyoucanchangethis,forexampleto:$\backslash$renewcommand$\{\backslash$citeindexfile\}\{names\}Ifyoudochange\citeindexfilethenyouhavetoput\makeindex[\citeindex]before\usepackage[...]\{natbib\}So,thereareeffectivelytwochoices,eitheralongthelinesof$\backslash$renewcommand\{\citeindexfile\}\{authors\}\%writetoauthors.idx\makeindex[\citeindexfile]\usepackage\{natbib\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
 \citeindextrue
 \renewcommand{\indexname}{Index of citations}
 \printindex[\citeindexfile]
or along the lines of
 \usepackage{natbib}
 \citeindextrue
 \makeindex
 \printindex
```


## Populating the idx file

In the standard classes, indexed items are written directly to an idx file. With the class, however, the indexed items are written to the aux file and then on the next LaTeX run the indexed items in the aux file are written to the designated idx file.

The disadvantage of this two stage process is that after any change to the indexed items LaTeX has to be run twice to ensure that the change is propagated to the idx file. Then, of course, a new ind will have to be created and LaTeX run one more time. However, this process is very similar to what you have to do if you are using BibTeX to create a bibliography.

The advantage of the approach is that indexed items from \include files that are not processed on a particular run are not lost. The standard direct write to an idx file loses any 'non-inluded' indexed items.

## 11 Captions and floats

This chapter uses the hangnum chapterstyle. Section numbers are also hung into the margin to match via the declaration \hangsecnum.

### 11.1 Introduction

Some publishers require, and some authors prefer, captioning styles other than the one style provided by standard LaTeX. This chapter describes how you can implement your own captioning style.

Some publishers require that documents that include multi-part tables use a continuation caption on all but the first part of the multi-part table. For the times where such a table is specified by the author as a set of tables, the class provides a simple 'continuation' caption command to meet this requirement. It also provides a facility for an 'anonymous' caption which can be used in any float environment. Captions can be defined that are suitable for use in non-float environments, such as placing a picture in a minipage and captioning it just as though it had been put into a normal figure environment. Further, a mechanism is provided for defining new float environments.

The commands and environments described below are very similar to those supplied by the ccaption package Wil01d.

### 11.2 Captions

## Changing the caption style

\captiondelim\{〈delim $\rangle\}$
The default captioning style is to put a delimeter in the form of a colon between the caption number and the caption title. The command \captiondelim can be used to change the delimeter. For example, to have an en-dash instead of the colon, \captiondelim\{-- \} will do the trick. Notice that no space is put between the delimeter and the title unless it is specified in the $\langle$ delim $\rangle$ parameter. The class initially specifies \captiondelim\{: \} to give the normal delimeter.
\captionnamefont\{〈fontspec $\rangle\}$
The $\langle$ fontspec $\rangle$ specified by \captionnamefont is used for typesetting the caption name; that is, the first part of the caption up to and including the delimeter (e.g., the por-
tion＇Table 3：＇）．〈fontspec $\rangle$ can be any kind of font specification and／or command and／or text．This first part of the caption is treated like：\｛\captionnamefont Table 3：\}, so font declarations，not font text－style commands，are needed for $\langle$ fontspec $\rangle$ For instance， \captionnamefont\｛\Large\sffamily\} to specify a large sans-serif font. The class initially specifies \captionnamefont $\}$ to give the normal font．

```
\captiontitlefont{\langlefontspec\rangle}
```

Similarly，the 〈fontspec〉 specified by \captiontitlefont is used for typesetting the title text of a caption．For example，\captiontitlefont\｛\itshape\} for an italic title text. The class initially specifies \captiontitlefont\｛\} to give the normal font.

```
\captionstyle[\langleshort\rangle]{\langlenormal\rangle}
\raggedleft \centering \raggedright centerlastline
```

Caption styles are set according to the \captionstyle declaration．Unless the optional $\langle s h o r t\rangle$ argument is given all captions are typeset according to $\langle n o r m a l\rangle$ ．If the optional $\langle$ short $\rangle$ argument is specififed，captions that are less than one line in length are typeset according to $\langle$ short $\rangle$ ．By default the name and title of a caption are typeset as a block （non－indented）paragraph．

Sensible values for the arguments include：\raggedleft，，\raggedright， and centerlastline．The class initially specifies
\captionstyle\｛\}
which gives the block paragraph style．The \centerlastline style gives a block paragraph but with the last line centered．

```
\hangcaption
\indentcaption{\langlelength\rangle}
\normalcaption
```

The command \hangcaption will cause captions to be typeset with the second and later lines of a multiline caption title indented by the width of the caption name．The command \indentcaption will indent title lines after the first by 〈length〉．These commands are independent of the \captionstyle\｛．．．\}. Note that a caption will not be simultaneously hung and indented．The \normalcaption command undoes any previous \hangcaption or \indentcaption command．The class initially specifies \normalcaption to give the normal non－indented paragraph style．

```
\changecaptionwidth
\captionwidth{\langlelength\rangle}
\normalcaptionwidth
```

Issuing the command \changecaptionwidth will cause the captions to be typeset within a total width 〈length $\rangle$ as specified by \captionwidth．Issuing the command \normalcaptionwidth will cause captions to be typeset as normal full width captions．The class initially specifies \normalcaptionwidth and \captionwidth\｛\linewidth\} to give the normal width. If a caption is being set within the side captioned environments from the sidecap package NG98． then it must be a \normalcaptionwidth caption．

Table 11.1
Redesigned table caption style

| three | III |
| :--- | ---: |
| five | V |
| eight | VIII |

```
\precaption{\langlepretext\rangle}
\postcaption{\langleposttext\rangle}
```

The commands \precaption and $\backslash$ postcaption specify $\langle$ pretext $\rangle$ and $\langle$ posttext $\rangle$ that will be processed at the start and end of a caption. For example
\precaption\{\rule\{\linewidth\}\{0.4pt\}\par\}
$\backslash$ postcaption\{\rule\{\linewidth\}\{0.4pt\}\}
will draw a horizontal line above and below the captions. The class initially specifies $\backslash$ precaption\{\} and \postcaption\{\} to give the normal appearance.

If any of the above commands are used in a float, or other, environment their effect is limited to the environment. If they are used in the preamble or the main text, their effect persists until replaced by a similar command with a different parameter value. The commands do not affect the apperance of the title in any 'List of... '.

```
\\[\langlelength\rangle]
*[\langlelength \rangle]
```

The normal LaTeX command $\backslash \backslash$ can be used within the caption text to start a new line. Remember that $\backslash \backslash$ is a fragile command, so if it is used within text that will be added to a 'List of...' it must be protected. As examples:

```
\caption\{Title with a \protect\\ new line in both the body and List of\}
\caption[List of entry with no new line]\{Title with a \\ new line\}
\caption[List of entry with a \protect\\ new line]\{Title text\}
Effectively, a caption is typeset as though it were:
\precaption
\{\captionnamefont NAME NUMBER \captiondelim\}
\{\captionstyle\captiontitlefont THE TITLE\}
\postcaption
```

Replacing the above commands by their defaults leads to the simple format:
\{NAME NUMBER: \}\{THE TITLE\}
As well as using the styling commands to make simple changes to the captioning style more noticeable modifications can also be made. To change the captioning style so that the name and title are typeset in a sans font it is sufficient to do:

```
\captionnamefont{\sffamily}
```

\captiontitlefont $\{\backslash$ sffamily $\}$

A more obvious change in styling is shown in Table 11.1. which was coded as:
\begin\{table\} }
\captionnamefont $\{\backslash$ sffamily\}

```
\captiondelim{}
\captionstyle{\\}
\captiontitlefont{\scshape}
\setlength{\belowcaptionskip}{10pt}
\caption{Redesigned table caption style} \label{tab:style}
\begin{tabular}{lr} \hline
\end{table}
```

This leads to the approximate caption format (processed within ):
$\{\backslash$ sffamily NAME NUMBER\}\{<br>\scshape THE TITLE\}
Note that the newline command ( $\backslash \backslash$ ) cannot be put in the first part of the format (i.e., the $\{\backslash s f f a m i l y ~ N A M E ~ N U M B E R\})$; it has to go into the second part, which is why it is specified via \captionstyle\{<br>\} and not \captiondelim\{<br>\}.

If a mixture of captioning styles will be used you may want to define a special caption command for each non-standard style. For example for the style of the caption in Table 11.1 .

```
\newcommand{\mycaption}[2][\@empty]{
 \captionnamefont{\sffamily\hfill}
 \captiondelim{\hfill}
 \captionstyle{\centerlastline\\}
 \captiontitlefont{\scshape}
 \setlength{\belowcaptionskip}{10pt}
 \ifx #1\@empty \caption{#2}\else \caption[#1]{#2}}
```

NOTE: Any code that involves the @ sign must be either in a package (.sty) file or enclosed between a \makeatletter . . \makeatother pairing.

The code for the Table 11.1 example can now be written as:

```
\begin{table}
\centering
\mycaption{Redesigned table caption style} \label{tab:style}
\begin{tabular}{lr} \hline
\end{table}
```

Note that in the code for \mycaption I have added two \hfill commands and \centerlastline compared with the original specification. It turned out that the original definitions worked for a single line caption but not for a multiline caption. The additional commands makes it work in both cases, forcing the name to be centered as well as the last line of a multiline title, thus giving a balanced appearence.

## Continuation captions and legends

```
\contcaption{\langletext\rangle}
```

The \contcaption command can be used to put a 'continuation' or 'concluded' caption into a float environment. It neither increments the float number nor makes any entry into a float listing, but it does repeat the numbering of the previous \caption command.

Table 11.2 illustrates the use of the \contcaption command. The table was produced from the following code.

Table 11.2: A multi-part table
just a single line $\quad 1$

Table 11.2: Continued
just a single line $\quad 2$
Table 11.2: Concluded
just a single line $\quad 3$

```
\begin{table}
\centering
\caption{A multi-part table} \label{tab:m}
\begin{tabular}{lc} \hline
 just a single line & 1 \\ \hline
\end{tabular}
\end{table}
\begin{table}
\centering
\contcaption{Continued}
\begin{tabular}{lc} \hline
 just a single line & 2 \\ \hline
\end{tabular}
\end{table}
\begin{table}
\centering
\contcaption{Concluded}
\begin{tabular}{lc} \hline
 just a single line & 3 \\ \hline
\end{tabular}
\end{table}
```

\legend\{〈text $\rangle\}$

The \legend command is intended to be used to put an anonymous caption into a float environment, but may be used anywhere.

For example, the following code was used to produce the two-line Table 11.3 . The $\backslash$ legend command can be used within a float independently of any \caption command.
$\backslash$ begin\{table\}
\caption\{Another table\} \label\{tab:legend\}
\begin\{tabular\}\{lc\} \hline }
A legendary table \& 5 <br>

Table 11.3: Another table
A legendary table 5
with two lines 6

The legend

| Legendary table |  |
| :--- | :---: |
| An anonymous table | 5 |
| with two lines | 6 |

```
 with two lines & 6 \\ \hline
\end{tabular}
\legend{The legend}
\end{table}
```

Captioned floats are usually thought of in terms of the table and figure environments. There can be other kinds of float. As perhaps a more interesting example, the following code produces the titled marginal note which should be displayed near here.

```
\marginpar{\legend{Title legend}
This is a marginal note with a legend.}
```

If you want the legend text to be included in the 'List of. . .' use the \addcontentsline command in conjunction with the \legend. For example:

```
\addcontentsline{lot}{table}{Titling text} % left justifified
\addcontentsline{lot}{table}{\protect\numberline{}Titling text} % indented
```

The first of these forms will align the first line of the legend text under the normal table numbers. The second form will align the first line of the legend text under the normal table titles. In either case, second and later lines of a multi-line text will be aligned under the normal title lines.

As an example, the Legendary table is produced by the following code:

```
\begin{table}
\centering
\captiontitlefont{\sffamily}
\legend{Legendary table}
\addcontentsline{lot}{table}{Legendary table (toc 1)}
\addcontentsline{lot}{table}{\protect\numberline{}Legendary table (toc 2)}
\begin{tabular}{lc} \hline
 An anonymous table & 5 \\
 with two lines & 6 \\ \hline
\end{tabular}
\end{table}
```

Look at the List of Tables to see how the two forms of \addcontentsline are typeset.
As with the \caption command, the spacing before and after a legend is controlled by the \abovecaptionskip and \belowcaptionskip lengths.

$$
\text { \namedlegend }[\langle\text { short-title }\rangle]\{\langle\text { long-title }\rangle\}
$$

Table: Named legendary table

| seven | VII |
| :--- | ---: |
| eight | VIII |

As a convenience, the \namedlegend command is like the \caption command except that it does not number the caption and, by default, puts no entry into a 'List of...' file. Like the \caption command, it picks up the name to be prepended to the title text from the float environment in which it is called (e.g., it will use \tablename if called within a table environment). The following code is the source of the Named legendary table.

```
\begin{table}
\centering
\captionnamefont{\sffamily}
\captiontitlefont{\itshape}
\namedlegend{Named legendary table}
\begin{tabular}{lr} \hline
seven & VII \\
eight & VIII \\ \hline
\end{tabular}
\end{table}
```

```
\flegtype{\langlename\rangle}
```

\flegtoctype\{〈title $\rangle\}$

The macro \flegtype, where type is the name of a float environment (e.g., table) is called by the \namedlegend macro. It is provided as a hook that defines the $\langle n a m e\rangle$ to be used as the name in \namedlegend. Two defaults are provided, namely:
$\backslash$ newcommand $\{\backslash$ flegtable $\}\{\backslash$ tablename $\}$
$\backslash$ newcommand\{\flegfigure\}\{\figurename\}
which may be altered via }[1]\{
\addcontentsline\{lot\}\{table\}\{\#1\}\}
The \legend command produces a plain, unnumbered heading. It can also be useful sometimes to have named and numbered captions outside a floating environment, perhaps in a minipage if you want the table or picture to appear at a precise location in your document.

```
\newfixedcaption[\langlecapcommand\rangle]{\langlecommand\rangle}{\langle{loat\rangle}
\renewfixedcaption[\langlecapcommand\rangle]{\langlecommand\rangle}{\langlefloat\rangle}
\providefixedcaption[\langlecapcommand }\rangle\mathrm{] {\<command }\rangle}{\langle\mathrm{ float }\rangle
```

The \newfixedcaption command, and its friends, can be used to create a new captioning $\langle$ command $\rangle$ that may be used outside the float environment $\langle$ float $\rangle$. Both the environ-
ment $\langle$ float $\rangle$ and a captioning command, $\langle$ capcommand $\rangle$, for that environment must have been defined before calling \newfixedcaption. Note that \namedlegend can be used as $\langle$ capcommand $\rangle$. The \renewfixedcaption and \providefixedcaption commands take the same arguments as \newfixedcaption; the three commands are analagous to those in the \newcommand family.

For example, to define a new $\backslash$ figcaption command for captioning pictures outside the figure environment, do \newfixedcaption $\{\backslash$ figcaption\} \{figure\}
The optional $\langle$ capcommand $\rangle$ argument is the name of the float captioning command that is being aliased. It defaults to \caption. As another example, where the optional argument is required, if you want to create a new continuation caption command for non-floating tables, say \ctabcaption, then do \newfixedcaption[\contcaption] \{\ctabcaption\}\{table\}

Captioning commands created by \newfixedcaption will be named and numbered in the same style as the original 〈capcommand $\rangle$, can be given a \label, and will appear in the appropriate 'List of...'. They can also be used within floating environments, but will not use the environment name as a guide to the caption name or entry into the 'List of...'. For example, using \ctabcaption in a figure environment will still produce a Table... named caption.

Sometimes captions are required on the opposite page to a figure, and \newf ixedcaption can be useful in this context. For example, if figure captions should be placed on an otherwise empty page immediately before the actual figure, then this can be accomplished by the following hack:

```
\newfixedcaption{\figcaption}{figure}
...
\afterpage{ % fill current page then flush pending floats
 \clearpage
 \begin{midpage} % vertically center the caption
 \figcaption{The caption} % the caption
 \end{midpage}
 \clearpage
 \begin{figure}THE FIGURE, NO CAPTION HERE\end{figure}
 \clearpage
} % end of \afterpage
```

Note that the afterpage package Car95 is required, which is part of the required tools bundle. The midpage package supplies the midpage environment, which can be simply defined as:
\newenvironment $\{$ midpage $\}\{\backslash$ vspace* $\{\backslash f i l l\}\}\{\backslash$ vspace $*\{\backslash$ fill $\}\}$
The code might need adjusting to meet your particular requirements. The \cleartoevenpage command ensures that you get to the next even-numbered page (the \cleardoublepage gets you to the next odd-numbered page and 
 gets you to the next page which may be odd or even).

## Bilingual captions

Some documents require bilingual (or more) captions. The class provides a set of commands for bilingual captions. Extensions to the set, perhaps to support trilingual captioning, are

## EXAMPLE FIGURE WITH BITWONUMCAPTION

Figure 11．1：Long \bitwonumcaption
Bild 11．1：Lang \bitwonumcaption
EXAMPLE FIGURE WITH BIONENUMCAPTION
Figure 11．2：Long English \bionenumcaption
Bild 11．2：Lang Deutsch \bionenumcaption
left as an exercise for the document author．

```
\bitwonumcaption[\langlelabel\rangle]{\langleshort1\rangle}{\langlelong1\rangle}{\langleNAME\rangle}{\langleshort2\rangle}{\langlelong2\rangle}
\bionenumcaption[\langlelabel\rangle]{\langleshort1\rangle}{\langlelong1\rangle}{\langleNAME\rangle}{\langleshort2\rangle}{\langlelong2\rangle}
```

Bilingual captions can be typeset by the \bitwonumcaption command which has six argu－ ments．The first，optional argument 〈label〉，is the name of a label，if required．$\langle$ short 1$\rangle$ and〈long1〉 are the short（i．e．，equivalent to the optional argument to the \caption command） and long caption texts for the main language of the document．The value of the $\langle N A M E\rangle$ argument is used as the caption name for the second language caption，while $\langle$ short2 $\rangle$ and〈long2〉 are the short and long caption texts for the second language．For example，if the main and secondary languages are English and German and a figure is being captioned： \bitwonumcaption\｛Short\}\{Long\}\{Bild\}\{Kurz\}\{Lang\}
If the short title text（s）is not required，then leave the appropriate argument（s）either empty or as one or more spaces，like：
\bitwonumcaption［fig：bi1］\｛\}\{Long\}\{Bild\}\{ \}\{Lang\}
Both language texts are entered into the appropriate＇List of．．．＇，and both texts are num－ bered．

Figure 11.1 is an example of using the above code．
The \bionenumcaption command takes the same arguments as \bitwonumcaption． The difference between the two commands is that \bionenumcaption does not number the second language text in the＇List of．．．＇．Figure 11.2 is an example of using $\backslash$ bionenumcaption．

```
\bicaption[\langlelabel\rangle]{\langleshort1\rangle}{\langlelong1\rangle}{\langleNAME\rangle}{\langlelong2\rangle}
```

When bilingual captions are typeset via the \bicaption command the second language text is not put into the＇List of．．．＇The command takes 5 arguments．The optional 〈label $\rangle$ is for a label if required．$\langle$ short1 $\rangle$ and $\langle$ long1 $\rangle$ are the short and long caption texts for the main language of the document．The value of the $\langle N A M E\rangle$ argument is used as the caption name for the second language caption．The last argument，$\langle l o n g 2\rangle$ ，is the caption text for the second language（which is not put into the＇List of．．．＇）．For example，if the main and secondary languages are English and German：
\bicaption\｛Short\}\{Long\}\{Bild\}\{Langlauf\}
If the short title text is not required，then leave the appropriate argument either empty or as one or more spaces．

EXAMPLE FIGURE WITH A RULED BICAPTION

Figure 11．3：Longingly
Bild 11．3：Langlauf

Figure 11.3 is an example of using \bicaption and was produced by the following code：

```
\begin{figure}
\centering
EXAMPLE FIGURE WITH A RULED BICAPTION
\precaption{\rule{\linewidth}{0.4pt}\par}
\midbicaption{\precaption{}\postcaption{\rule{\linewidth}{0.4pt}}}
\bicaption[fig:bi2]{Short English \cs{bicaption}}{Longingly}{Bild}{Langlauf}
\end{figure}
```

\bicontcaption\{〈long1 $\rangle\}\{\langle$ NAME $\rangle\}\{\langle$ longQ $\rangle\}$

Bilingual continuation captions can be typeset via the \bicontcaption command．In this case，neither language text is put into the＇List of．．．＇．The command takes 3 arguments． $\langle l o n g 1\rangle$ is the caption text for the main language of the document．The value of the $\langle N A M E\rangle$ argument is used as the caption name for the second language caption．The last argument，〈long2〉，is the caption text for the second language．For example，if the main and secondary languages are again English and German：
\bicontcaption\｛Continued\}\{Bild\}\{Fortgefahren\}
\midbicaption\｛〈text $\rangle\}$
The bilingual captions are implemented by calling \caption twice，once for each language． The command \midbicaption，which is similar to the \precaption and \postcaption commands，is executed just before calling the second \caption．Among other things，this can be used to modify the style of the second caption with respect to the first．For example， if there is a line above and below normal captions，it is probably undesirable to have a double line in the middle of a bilingual caption．So，for bilingual captions the following may be done within the float before the caption：
\precaption\｛\rule\｛\linewidth\}\{0.4pt\}\par\}
\postcaption\｛\}
$\backslash$ midbicaption\｛\precaption\｛\}\postcaption\{\rule\{\linewidth\}\{0.4pt\}\}\}
This sets a line before the first of the two captions，then the $\backslash$ midbicaption．．．nulls the pre－caption line and adds a post－caption line for the second caption．The class initially specifies \midbicaption\｛\}.

## Subcaptions

The subfigure package Coc02 enables the captioning of sub－figures within a larger figure， and similarly for tables．The subfigure package may be used with the class，or you can
use the class commands described below．These commands can only be used inside a float environment for which a subfloat ${ }^{1}$ has been specified．

```
\subcaption[\langlelist-entry\rangle]{\langlesubcaption\rangle}
```

The \subcaption command is similar to the caption command．It typesets an identified〈subcaption〉，where the identification is an alphabetic character enclosed in parentheses．If the optional 〈list－entry〉 argument is present，〈list－entry〉 is added to the caption listings for the float．If it is not present，then $\langle$ subcaption $\rangle$ is added to the listing．The \subcaption macro should only be used in a fixed width box of some sort，for example a minipage environment，as the $\langle$ subcaption $\rangle$ will be typeset using a box which is the width of the environment．

For example：
\begin\｛figure\}
\begin\｛minipage\}\{0.3\textwidth\}
\verb？Some verbatim text？
\subcaption\｛First text\}
\end\｛minipage\}
\hfill
\begin\｛minipage\}\{0.3\textwidth\}
\verb？More verbatim text？
\subcaption\｛Second text\}
\end\｛minipage\}
\caption\｛Verbatim texts\}
\end\｛figure\}
If a figure that includes sub－figures is itself continued then it may be desireable to continue the captioning of the sub－figures．For example，if Figure 3 has three sub－figures， say A，B and C，and Figure 3 is continued then the sub－figures in the continuation should be $\mathrm{D}, \mathrm{E}$ ，etc．

```
\contsubcaption[\langlelist-entry \]{\langlesubcaption\rangle}
```

The \contsubcaption command is the continued version of \subcaption．

```
\label(\langlebookmark\rangle){\langlekey\rangle}
\subcaptionref{\langlekey\rangle}
```

A \label command may be included in the 〈subcaption〉 argument of \subcaption or \contsubcaption．Using \ref to refer to the label will typeset the number of the float （obtained from a labelled \caption）and the subcaption identifier．On the other hand， using \subcaptionref will typeset just the subcaption identifier．

In case the hyperref package is used，the \label command when used inside a $\langle$ subcaption $\rangle$ argument can take an optional argument，enclosed in parentheses not square brackets，〈bookmark〉 which will create a bookmark field of the form＇Subfigure 3．2（c）＇．

[^27]
## \tightsubcaptions \loosesubcations

The \tightsubcaptions declaration will put little vertical space around the subcaption, while \loosesubcaptions will add more whitespace. The default is \tightsubcaptions.

```
\subcaptionsize{\langlefont-size\rangle}
\subcaptionlabelfont{\langlefontspec\rangle}
\subcaptionfont{\langle{ontspec\rangle}
```

The size of the font used for subcaptions is set by \subcaptionsize. The default is:
\subcaptionsize\{\footnotesize\}
The fonts used for the identifier and the subcaption are set by \subcaptionlabelfont and $\backslash$ subcaptionfont, respectively, where $\langle$ fontspec $\rangle$ is one or more font style declarations (e.g., \bfseries \slshape for a bold, slanted font). The defaults are:
\subcaptionlabelfont\{\normalfont\}
\subcaptionfont\{\normalfont\}

```
\subcaptionstyle{\langlestyle\rangle}
```

By default the identifier and title of a subcaption are typeset as a block (non-indented) paragraph. \subcaptionstyle can be used to alter this. Sensible values for $\langle$ style $\rangle$ are: , \raggedleft or \raggedright for styles corresponding to these declarations. The \centerlastline style gives a block paragraph but with the last line centered. The class initially specifies \subcaptionstyle\{\} to give the normal block paragraph style.

```
\hangsubcaption
\shortsubcaption
\normalsubcaption
```

The \hangsubcaption declaration causes subcaptions to be typeset with the identifier above the title. With the \shortsubcaption declaration subcaptions that are less than one line in length are typeset left justified instead of centered. The \normalsubcaption command undoes any previous \hangsubcaption or \shortsubcaption command. The class initially specifies \normalcaption.

```
\subtop[\langlelist-entry\rangle][\langlesubcaption\rangle]{\langletext\rangle}
\subbottom[\langlelist-entry\rangle][\langlesubcaption\rangle]{\langletext\rangle}
```

The command \subtop puts a subcaption number on top of the $\langle t e x t\rangle$. If both optional arguments are present, $\langle$ list-entry $\rangle$ will be added to the appropriate listing, and an alphabetic identifier and $\langle$ subcaption $\rangle$ will be placed above $\langle t e x t\rangle$. If only one optional argument is present, this is treated as $\langle$ subcaption $\rangle$; the identifier and $\langle$ subcaption $\rangle$ are placed above $\langle t e x t\rangle$ and $\langle$ subcaption $\rangle$ is added to the listing. In all cases, the identifier is placed above $\langle t e x t\rangle$ and added to the listing.

The \subbottom command is similar, except that the identifier and any $\langle$ subcaption $\rangle$ is placed below the $\langle$ text $\rangle$.
(a) Subfigure 1

Figure 11.4: Figure with two subfigures

The main caption can be at either the top or the bottom of the float.
For example:
$\backslash$ begin\{figure $\}$
\subbottom\{...\} \% captioned as (a) below
\subtop\{...\} \% captioned as (b) above
\caption\{...\}
\end\{figure\} }
As another example, Figure 11.4 and the next paragraph was produced by the code below.

Figure 11.4 has two subfigures, namely 11.4(a) and (b)
Figure \ref\{subfig:sf\} has two subfigures, namely \ref\{sf:1\}
and \subcaptionref\{sf:2\}.
\begin\{figure\} }
\subbottom[Subfigure 1]\{\fbox\{SUBFIGURE ONE\}\label\{sf:1\}\}
\hfill
\subbottom[Subfigure 2]\{\fbox\{SUBFIGURE TWO\}\label\{sf:2\}\}
\caption\{Figure with two subfigures\} \label\{subfig:sf\}
\end\{figure\} }
The major difference between the \subcaption command and the \subtop and \subbottom commands, apart from the $\langle$ text $\rangle$ argument, is that \subcaption must be used in a fixed width environment while \subtop uses the width of $\langle t e x t\rangle$ for the box in which to typeset the $\langle$ subcaption $\rangle$.

```
\contsubtop[\langlelist-entry\rangle][\langlesubcaption\rangle]{\langletext\rangle}
\contsubbottom[\langlelist-entry\rangle][\langlesubcaption\rangle]{\langletext\rangle}
```

The command \contsubtop will continue the sub-caption numbering scheme across (continued) floats, putting the $\langle$ subcaption $\rangle$ at the top of the $\langle t e x t\rangle$. The $\backslash$ contsubbottom command is similar but puts the $\langle$ subcaption $\rangle$ at the bottom of the $\langle$ text $\rangle$. In either case, the main caption can be at the top or bottom of the float.

For example:

```
\begin{table}
\caption{...}
\subtop{...} % captioned as (a) above
\subtop{...} % captioned as (b) above
\end{table}
\begin{table}
\contcaption{Concluded}
```

```
\contsubtop{...} % captioned as (c) above
\contsubtop{...} % captioned as (d) above
\end{table}
```

As with the \subcaption command，a \label command may be used in either the $\langle$ subcaption $\rangle$ or the $\langle$ text $\rangle$ arguments to \subtop and friends．

## How LaTeX makes captions

This section provides an overview of how LaTeX creates captions and gives some examples of how to change the captioning style without having to use any package．The section need not be looked at more than once unless you like reading LaTeX code or you want to make changes to LaTeX＇s style of captioning．

The LaTeX kernel provides tools to help in the definition of captions，but it is the particular class that decides on their format．

```
\caption[\langleshort\rangle]{\langlelong\rangle}
```

The kernel（in ltfloat．dtx）defines the caption command via
\def \caption\｛\refstepcounter\＠captype \＠dblarg\｛\＠caption\＠captype\}\}

```
\@captype
```

\＠captype is defined by the code that creates a new float environment and is set to the en－ vironment＇s name（see the code for \＠xfloat in ltfloat．dtx）．For a figure environment， there is an equivalent to

```
\def \@captype\{figure\}
```

\@caption\{〈type $\rangle\}[\langle$ short $\rangle]\{\langle$ long $\rangle\}$

The kernel also provides the \＠caption macro as：

```
\long\def\@caption#1[#2]#3{
 \par
 \addcontentsline{\csname ext@#1\endcsname}{#1} <--
 {\protect\numberline{\csname the#1\endcsname}{\ignorespaces #2}}
 \begingroup
 \@parboxrestore
 \if@minipage
 \@setminipage
 \fi
 \normalsize
 \@makecaption{\csname fnum@#1\endcsname}{\ignorespaces #3}\par <--
 \endgroup}
```

where $\langle$ type $\rangle$ is the name of the environment in which the caption will be used．Putting these three commands together results in the user＇s view of the caption command as \caption［〈short $\rangle$ ］\｛〈long $\rangle$ ．

It is the responsibilty of the class (or package) which defines floats to provide definitions for \ext@type, \fnum@type and \@makecaption which appear in the definition of \@caption (in the lines marked <-- above).

## \ext@type

This macro holds the name of the extension for a 'List of...' file. For example for the figure float environment there is the definition equivalent to
\newcommand\{\ext@figure\}\{lof \}

```
\fnum@type
```

This macro is responsible for typesetting the caption number. For example, for the figure environment there is the definition equivalent to

```
\newcommand{\fnum@figure}{\figurename~\thefigure}
```

\@makecaption\{〈number $\rangle\}\{\langle$ text $\rangle\}$

The \@makecaption macro, where $\langle$ number $\rangle$ is a string such as 'Table 5.3' and $\langle t e x t\rangle$ is the caption text, performs the typesetting of the caption, and is defined in the standard classes (in classes.dtx) as the equivalent of:
\newcommand\{\@makecaption\}[2]\{
\vskip\abovecaptionskip <- 1
\sbox\@tempboxa\{\#1: \#2\} <- 2
\ifdim \wd\@tempboxa >\hsize

```
 #1: #2\par <- 3
```

\else
\global \@minipagefalse
\hb@xt@\hsize\{\hfil\box\@tempboxa\hfil\}
$\backslash f i$
\vskip\belowcaptionskip\} <- 4
\abovecaptionskip \belowcaptionskip

Vertical space is added before and after a caption (lines marked 1 and 4 in the code for \@makecaption above) and the amount of space is given by the lengths \abovecaptionskip and \belowcaptionskip. The standard classes set these to 10 pt and 0 pt respectively. If you want to change the space before or after a caption, use \setlength to change the values. In figures, the caption is usually placed below the illustration. The actual space between the bottom of the illustration and the baseline of the first line of the caption is the \abovecaptionskip plus the \parskip plus the \baselineskip. If the illustration is in a center environment then additional space will be added by the \end\{center\}; it is usually } better to use the  command rather than the center environment.

The actual typesetting of a caption is effectively performed by the code in lines marked 2 and 3 in the code for \@makecaption; note that these are where the colon that is typeset after the number is specified. If you want to make complex changes to the default captioning

## A THOUSAND WORDS...

Figure 11.5: A picture is worth a thousand words

## ANOTHER THOUSAND WORDS...

Figure 11.6 - A different kind of figure caption
style you may have to create your own version of \@caption using 

## \{\textbf\{\figurename~\thefigure\}\}

REMEMBER: If you are doing anything involving commands that include the @ character, and it's not in a class or package file, you have to do it within a \makeatletter and $\backslash$ makeatother pairing. So, if you modify the \fnum@figure command anywhere in your document it has to be done as:

```
\makeatletter
\renewcommand{\fnum@figure}{.}
\makeatother
```

As an example, Figure 11.5 was created by the following code:

```
\makeatletter
```

$\backslash$ makeatother
\begin\{figure\} }
A THOUSAND WORDS $\backslash$ ldots
\caption\{A picture is worth a thousand words\}\label\{fig:sc\}
\end\{figure\} }

As another example, suppose that you needed to typeset the $\backslash$ figurename and its number in a bold font, replace the colon that normally appears after the number by a long dash, and typeset the actual title text in a sans-serif font, as is illustrated by the caption for Figure 11.6 . The following code does this.

```
\makeatletter
\renewcommand{\fnum@figure}[1]{\textbf{\figurename~\thefigure}
 --- \sffamily}
\makeatother
\begin{figure}
 \centering
 ANOTHER THOUSAND WORDS\ldots
\caption{A different kind of figure caption}\label{fig:sf}
\end{figure}
```

Perhaps a little description of how this works is in order. Doing a little bit of TeX 's macro processing by hand, the typesetting lines in \@makecaption (lines 2 and 3) get instantiated like:

```
\fnum@figure{\figurename~\thefigure}: text
```

Redefining \fnum@figure to take one argument and then not using the value of the argument essentially gobbles up the colon. Using \textbf\{\figurename~ ${ }^{\sim}$ thefigure $\}$
in the definition causes \figurename and the number to be typeset in a bold font. After this comes the long dash. Finally, putting \sffamily at the end of the redefinition causes any following text (i.e., the actual title) to be typeset using the sans-serif font.

If you do modify \@makecaption, then spaces in the definition may be important; also you must use the comment (\%) character in the same places as I have done above. Hopefully, though, the class provides the tools that you need to make most, if not all, of any likely caption styles.

## Captions with footnotes

If you want to have a caption with a footnote, think long and hard as to whether this is really essential. It is not normally considered to be good typographic practice, and to rub the point in LaTeX does not make it necessarily easy to do. However, if you (or your publisher) insists, read on.

If it is present, the optional argument to \caption is put into the LoF/lot as appropriate. If the argument is not present, then the text of the required argument is put into the LoF. In the first case, the optional argument is moving, and in the second case the required argument is moving. The $\backslash$ footnote command is fragile and must be $\backslash$ protected (i.e., $\backslash$ protect $\backslash$ footnote $\}$ ) if it is used in a moving argument. If you don't want the footnote to appear in the LoF, use a footnoteless optional argument and a footnoted required argument.

You will probably be surprised if you just do, for example:
\begin\{figure\} }
\caption[For LoF]\{For figure\footnote\{The footnote\}\}
\end\{figure\} }
because (a) the footnote number may be greater than you thought, and (b) the footnote text has vanished. This latter is because LaTeX won't typeset footnotes from a float. To get an actual footnote within the float you have to use a minipage, like:

```
\begin{figure}
\begin{minipage}{\linewidth}
\caption[For LoF]{For figure\footnote{The footnote}}
\end{minipage}
\end{figure}
```

If you are using the standard classes you may now find that you get two footnotes for the price of one. Fortunately this will not occur with this class, nor will an unexpected increase of the footnote number.

When using a minipage as above, the footnote text is typeset at the bottom of the minipage (i.e., within the float). If you want the footnote text typeset at the bottom of the page, then you have to use the [^29]and $\backslash$ footnotetext commands like:
\begin\{figure\} }
\caption[For LoF] \{For figure $\backslash$ footnotemark\}
\end\{figure\} }

## \footnotetext\{The footnote\}

This will typeset the argument of the \footnotetext command at the bottom of the page where you called the command. Of course, the figure might have floated to a later page, and then it's a matter of some manual fiddling to get everything on the same page, and possibly to get the footnote marks to match correctly with the footnote text.

At this point, you are on your own.

### 11.3 Floats

## New float environments

```
\newfloat[\langlewithin \rangle]{\langlefenv\rangle}{\langleext\rangle}{\langlecapname\rangle}
```

The \newfloat command creates two new floating environments called $\langle f e n v\rangle$ and $\left\langle f e n v^{*}\right\rangle$. If there is not already a counter defined for $\langle f e n v\rangle$ a new one will be created to be restarted by $\langle$ within $\rangle$, if that is specified. A caption within the environment will be written out to a file with extension $\langle e x t\rangle$. The caption, if present, will start with $\langle$ capname $\rangle$. For example, the figure float for the class is defined as:
\newfloat[chapter]\{figure\}\{lof\}\{\figurename\}
\renewcommmand\{\thefigure\}\{\%
\ifnum\c@chapter>\z@ \thechapter.\fi \@arabic\c@figure\}
The last bit of the definition is internal code to make sure that if a figure is in the document before chapter numbering starts, then the figure number will not be preceded by a nonexistent chapter number.

The captioning style for floats defined with \newfloat is the same as for the figures and tables.

The \newfloat command generates several new commands, some of which are internal LaTeX commands. For convenience, assume that the command was called as
\newfloat $\{\mathrm{X}\}\{\mathrm{Z}\}$ \{capname $\}$
so $X$ is the name of the float environment and also the name of the counter for the caption, and Z is the file extension. The following float environment and related commands are then created.

```
\begin{X} float material \end{X}
\begin{X*} float material \end{X*}
```

The new float environment is called $X$, and can be used as either $\backslash$ begin $\{\mathrm{X}\}$ or $\backslash$ begin $\{\mathrm{X} *\}$, with the matching $\backslash e n d\{X\}$ or $\backslash e n d\{X *\}$. It is given the standard default position specification of tbp.

## Zdepth

The Zdepth counter is analogous to the standard tocdepth counter in that it specifies that entries in a listing should not be typeset if their numbering level is greater than Zdepth. The default definition is \setcounter\{Zdepth\}\{1\}. To have a subfloat of Z appear in the listing do \setcounter\{Zdepth\}\{2\}.

As a fuller example, suppose you wanted both figures (which come with the class), and diagrams. You could then do something like the following.

```
\newcommand{\diagramname}{Diagram}
\newcommand{\listdiagramname}{List of Diagrams}
\newlistof{listofdiagrams}{dgm}{\listdiagramname}
\newfloat{diagram}{dgm}{\diagramname}
\newfixedcaption{\fdiagcaption}{diagram}
\newlistentry{diagram}{dgm}{0}
\begin{document}
\listoffigures
\listfofdiagrams
\begin{diagram}
\caption{A diagram} \label{diag1}
\end{diagram}
As diagram~\ref{diag1} shows ...
\begin{minipage}{.9\textwidth}
\fdiagcaption{Another diagram} \label{diag2}
\end{minipage}
```

In contrast to diagram~ $\backslash$ ref $\left\{\right.$ diag1\}, diagram~ $\backslash$ ref $\left\{\right.$ diag2 $^{2}$ provides ...

As a word of warning, if you mix both floats and fixed environments with the same kind of caption you have to ensure that they get printed in the correct order in the final document. If you do not do this, then the 'List of...' captions will come out in the wrong order (the lists are ordered according the page number in the typeset document, not your source input order).

## New subfloats

The subfigure package defines the subfigure and subtable subfloats. The class does not define any subfloats, if you need them you have to specify them yourself.
\newsubfloat $\{\langle f e n v\rangle\}$

The \newsubfloat command enables the subcaptioning commands (\subcaption, \subtop, etc.) to be used within the float environment $\langle f e n v\rangle$ previously defined via $\backslash$ newfloat.

Calling \newsubfloat $\{f e n v\}$ will, among other things, create a new counter called subfenv and the command \thesubfenv for typesetting the counter. The default definition of \thesubfenv is equivalent to:
\newcommand\{\thesubfenv\}\{(\alph\{subfenv\})\}
which typesets a lowercase letter enclosed in parentheses. This is the identifier for subcaptions, and may be changed via 

If you are not using the subfigure package and want, say, subfigures then in the preamble call:

## ILLUSTRATION 1

## ILLUSTRATION 2

Figure 11.7 - Float with two illustrations
\newsubfloat\{figure\}
and if you want the subcaptions to appear in the List of Figures, put:
\setcounter\{lofdepth\}\{2\}
between the \begin\{document\} and \listoffigures commands. }
Further, if you had some subfigures that were originally planned for use with the subfigure package and wanted to use these but without the package, you could:
\let\subfigure\subbottom
which will make \subfigure an alias for \subbottom.

## Multiple floats

As far as LaTeX is concerned, a float is a box with certain restrictions as to where it can be placed. You can effectively put what you like inside a float box. Normally there is just a single picture or tabular in a float but you can put as many of these as will fit inside the box.

Three typical cases of multiple figures/tables in a single float come to mind:

- Multiple illustrations/tabulars with a single caption.
- Multiple illustrations/tabulars each individually captioned.
- Multiple illustrations/tabulars with one main caption and individual subcaptions.

The subfigure package is designed for the last of these cases; the others do not require a package.

Figure 11.7 is an example of multiple illustrations in a single float with a single caption. This figure was produced by the following code.

```
\begin{figure}
\centering
\hspace*{\fill}
 {ILLUSTRATION 1} \hfill {ILLUSTRATION 2}
\hspace*{\fill}
\caption{Float with two illustrations} \label{fig:mult1}
\end{figure}
```

The \hspace*\{\fill\} and \hfill commands were used to space the two illustrations equally. Of course  text.

The following code produces Figures 11.8 and 11.9 which are examples of two separately captioned illustrations in one float.

```
\begin{figure}
\centering
\begin{minipage}{0.4\textwidth}
 \centering
 ILLUSTRATION 3
 \caption{Illustration 3} \label{fig:mult2}
\end{minipage}
```


## ILLUSTRATION 3

Figure 11.8 －Illustration 3

## ILLUSTRATION 4

Figure 11.9 －Illustration 4

```
\hfill
\begin{minipage}{0.4\textwidth}
 \centering
 ILLUSTRATION 4
 \caption{Illustration 4} \label{fig:mult3}
\end{minipage}
\end{figure}
```

In this case the illustrations（or graphics or tabulars）are put into separate minipage envi－ ronments within the float，and the captions are also put within the minipages．Note that any required \label must also be inside the minipage．If you wished，you could add yet another caption after the end of the two minipages．

Keith Reckdahl Rec97 provides more examples of this kind of thing．

## Where LaTeX puts floats

The general format for a float environment is：
\begin\｛float\}[〈loc $]$ ．．．\end\｛float\} or for double column floats:
\begin\｛float＊\}[〈loc〉] . . . \end\{float*\} }
where the optional argument $\langle l o c\rangle$ ，consisting of one or more characters，specifies a location where the float may be placed．Note that the multicol package［Mit98］only supports the starred floats and it will not let you have a single column float．The possible $\langle l o c\rangle$ values are one or more of the following：
b bottom：at the bottom of a page．This does not apply to double column floats as they may only be placed at the top of a page．
h here：if possible exactly where the float environment is defined．It does not apply to double column floats．
p page：on a separate page containing only floats（no text）．
t top：at the top of a page．
！make an extra effort to place the float at the earliest place specified by the rest of the argument．
The default for $\langle l o c\rangle$ is tbp，so the float may be placed at the top，or bottom，or on a float－only page；the default works well $95 \%$ of the time．Floats of the same kind are output in definition order，except that a double column float may be output before a later single column float of the same kind，or vice－versa ${ }^{2}$ ．A float is never put on an earlier page than its definition but may be put on the same or later page of its definition．If a float cannot be placed，all suceeding floats will be held up，and LaTeX can store no more than 16 held up floats．A float cannot be placed if it would cause an overfull page，or it otherwise cannot be fitted according the the float parameters．A 
 or \cleardoublepage or \end\｛document\} flushes out all unprocessed floats, irrespective of the $\langle l o c\rangle$ and float parameters，putting them on float－only pages．



Figure 11.10 - Float and text page parameters

## \suppressfloats[|pos $\rangle$ ]

You can use the command \suppressfloats to suppress floats at a given $\langle p o s\rangle$ on the current page. \suppressfloats [t] prevents any floats at the top of the page and \suppressfloats [b] prevents any floats at the bottom of the page. The simple \suppressfloats prevents both top and bottom floats.

The flafter package, which should have come with your LaTeX distribution, provides a means of preventing floats from moving backwards from their definition position in the text. This can be useful to ensure, for example, that a float early in a \section\{\} is not typeset before the section heading.

Figures 11.10 and 11.11 illustrate the many float parameters and Table 11.4 lists the float parameters and the typical standard default values. All the lengths are rubber lengths,


Figure 11.11 - Float parameters

Table 11.4: Float placement parameters

| Parameter | Controls | Default |
| :---: | :---: | :---: |
| Counters - change with \setcounter |  |  |
| topnumber | max number of floats at top of a page | 2 |
| bottomnumber | max number of floats at bottom of a page | 1 |
| totalnumber | max number of floats on a text page | 3 |
| dbltopnumber | like topnumber for double column floats | 2 |
| Commands - change with  |  |  |
| \topfraction | max fraction of page reserved for top floats | 0.7 |
| \bottomfraction | max fraction of page reserved for bottom floats | 0.3 |
| \textfraction | min fraction of page that must have text | 0.2 |
| \dbltopfraction | like \topfraction for double column floats | 0.7 |
| \floatpagefraction | min fraction of a float page that must have float(s) | 0.5 |
| \dblfloatpagefraction | like \floatpagefraction for double column floats | 0.5 |
| Text page lengths - change with \setlength |  |  |
| \floatsep | vertical space between floats | 12 pt |
| \textfloatsep | vertical space between a top (bottom) float and suceeding (preceding) text | 20 pt |
| \intextsep | vertical space above and below an h float | 12 pt |
| \dblfloatsep | like \floatsep for double column floats | 12 pt |
| \dbltextfloatsep | like \textfloatsep for double column floats | 20 pt |
| Float page lengths - change with \setlength |  |  |
| \@fptop | space at the top of the page | Opt plus 1fil |
| \@fpsep | space between floats | 8pt plus 2fil |
| \@fpbot | space at the bottom of the page | Opt plus 1fil |
| \@dblfptop | like \@fptop for double column floats | Opt plus 1fil |
| \@dblfpsep | like \@fpsep for double column floats | 8pt plus 2fil |
| \@dblfpbot | like \@fpbot for double column floats | Opt plus 1fil |

and the actual defaults depend on both the class and its size option.
Given the displayed defaults, the height of a top float must be less than $70 \%$ of the textheight and there can be no more than 2 top floats on a text page. Similarly, the height of a bottom float must not exceed $30 \%$ of the textheight and there can be no more than 1 bottom float on a text page. There can be no more than 3 floats (top, bottom and here) on the page. At least $20 \%$ of a text page with floats must be text. On a float page (one that has no text, only floats) the sum of the heights of the floats must be at least $50 \%$ of the textheight. The floats on a float page should be vertically centered.

It can be seen that with the defaults LaTeX might have trouble finding a place for a float. Consider what will happen if a float is a bottom float whose height is $40 \%$ of the textheight and this is followed by a float whose height is $90 \%$ of the textheight. The first is too large to actually go at the bottom of a text page but too small to go on a float page by itself. The second has to go on a float page but it is too large to share the float page with the first float. LaTeX is stuck!

At this point it is worthwhile to be precise about the effect of a one character $\langle l o c\rangle$ argument:
[b] means: 'put the float at the bottom of a page with some text above it, and nowhere else'. The float must fit into the \bottomfraction space otherwise it and subsequent floats will be held up.
[h] means: 'put the float at this point and nowhere else'. The float must fit into the space left on the page otherwise it and subsequent floats will be held up.
[p] means: 'put the float on a page that has no text but may have other floats on it'. There must be at least ' $\backslash f$ floatpagefraction' worth of floats to go on a float only page before the float will be be output.
[t] means: 'put the float at the top of a page with some text below it, and nowhere else'. The float must fit into the \topfraction space otherwise it and subsequent floats will be held up.
[!...] means: 'ignore the \...fraction values for this float'.
You must try and pick a combination from these that will let LaTeX find a place to put your floats. However, you can also can change the float parameters to make it easier to find places to put floats. Some examples are:

- Decrease \textfraction to get more 'float' on a text page, but the sum of \textfraction and \topfraction and the sum of \textfraction and \bottomfraction should not exceed 1.0, otherwise the placement algorithm falls apart. A minimum value for \textfraction is about 0.10 - a page with less than $10 \%$ text looks better with no text at all, just floats.
- Both \topfraction and \bottomfraction can be increased, and it does not matter if their sum exceeds 1.0. A good typographic style is that floats are encouraged to go at the top of a page, and a better balance is achieved if the float space on a page is larger at the top than the bottom.
- Making \floatpagefraction too small might have the effect of a float page just having one small float. However, to make sure that a float page never has more than one float on it, do:
$\backslash$ renewcommand\{\floatpagefraction\}\{0.01\}
\setlength $\{\backslash$ @psep $\}\{\backslash$ textheight $\}$
- Setting \@fptop to Opt, \@fpsep to 8pt and \@fpbot to Opt plus 1 fil will force floats on a float page to start at the top of the page.
If you are experimenting, a reasonable starting position is:
\setcounter\{topnumber\} \{3\}
\setcounter\{bottomnumber\}\{2\}
\setcounter\{totalnumber\}\{4\}
\{0.85\}
\{0.5\}
\{0.15\}
\{0.7\}
and similarly for double column floats if you will have any. Actually, don't bother to try these settings as they are the default for this class.

One of LaTeX's little quirks is that on a text page, the 'height' of a float is its actual height plus \textfloatsep or \floatsep, while on a float page the 'height' is the actual height. This means that when using the default $\langle l o c\rangle$ of [tbp] at least one of the text
11. Captions and floats
page float fractions (\topfraction and/or \bottomfraction) must be larger than the $\backslash f l o a t p a g e f r a c t i o n ~ b y ~ a n ~ a m o u n t ~ s u f f i c i e n t ~ t o ~ t a k e ~ a c c o u n t ~ o f ~ t h e ~ m a x i m u m ~ t e x t ~ p a g e ~$ separation value.

## 12 Rows and columns

### 12.1 Introduction

The class provides extensions to the standard array and tabular environments. These are based partly on a merging of the array (MC98, dcolumn Car01, delarray Car94, tabularx Car99a, and booktabs Fea03] packages. Much of the material in this chapter strongly reflects the documentation of these packages.

However, new kinds of tabular environments are also provided.

### 12.2 General

```
\[\begin{array}[\langlepos\rangle]{\langlepreamble\rangle} rows \end{array} \]
\begin{tabular}[\langlepos\rangle]{\langlepreamble\rangle} rows \end{tabular}
\begin{tabular*}{\langlewidth\rangle}[\langlepos\rangle]{\langlepreamble\rangle} rows \end{tabular*}
\begin{tabularx}{\langlewidth\rangle}[\langlepos\rangle]{\langlepreamble\rangle} rows \end{tabularx}
```

The array and tabular environments are traditional and the others are extensions. The array is for typesetting math and has to be within a math environment of some kind. The tabular series are for typesetting ordinary text.

The optional $\langle p o s\rangle$ argument can be one of $\mathrm{t}, \mathrm{c}$, or b (the default is c ), and controls the vertical position of the array or tabular; either the top or the center, or the bottom is aligned with the baseline. Each row consists of elements separated by \&, and finished with $\backslash \backslash$. There may be as many rows as desired. The number and style of the columns is specified by the $\langle p r e a m b l e\rangle$. The width of each column is wide enough to contain its longest entry and the overall width of the array or tabular is sufficient to contain all the columns. However, the tabular* and tabularx provide more control over the width through their $\langle$ width $\rangle$ argument.

### 12.3 The preamble

You use the $\langle$ preamble〉 argument to the array and tabular environments to specify the number of columns and how you want column entries to appear. The preamble consists of a sequence of options, which are listed in Table 12.1 .

Examples of the options include:

- A flush left column with bold font can be specified with $>\{\backslash$ bfseries $\}$ l.
$\backslash$ begin\{center\}
\begin\{tabular\}\{>\{\large\}c } > \{ \backslash large \backslash bfseries \} l > \{ \backslash large \backslash itshape \} c \} \backslash toprule

Table 12.1: The array and tabular preamble options.

| 1 | Left adjusted column. |
| :---: | :---: |
| c | Centered adjusted column. |
| r | Right adjusted column. |
| $\mathrm{p}\{\langle$ width $\rangle\}$ | Equivalent to \parbox[t]\{ width $\rangle\}$. |
| $\mathrm{m}\{\langle$ width $\rangle$ \} | Defines a column of width $\langle$ width $\rangle$. Every entry will be centered in proportion to the rest of the line. It is somewhat like $\backslash \operatorname{parbox}\{\langle$ width $\rangle\}$. |
| $\mathrm{b}\{\langle$ width $\rangle\}$ | Coincides with \parbox[b] $\{\langle$ width $\rangle\}$. |
| $>\{\langle d e c l\rangle\}$ | Can be used before an l, r, c, p, m or a b option. It inserts $\langle$ decl $\rangle$ directly in front of the entry of the column. |
| $<\{\langle d e c l\rangle\}$ | Can be used after an l, r, c, p\{..\}, m\{..\} or a b\{..\} option. It inserts $\langle$ decl $\rangle$ right after the entry of the column. Inserts a vertical line. The distance between two columns will be enlarged by the width of the line. |
| @ $\{\langle$ decl $\rangle\}$ | Suppresses inter-column space and inserts $\langle$ decl $\rangle$ instead. |
| $!\{\langle\operatorname{dec} l\rangle\}$ | Can be used anywhere and corresponds with the I option. The difference is that $\langle d e c l\rangle$ is inserted instead of a vertical line, so this option doesn't suppress the normally inserted space between columns in contrast to @ $\mathbb{@} .$.$\} .$ |
| $\mathrm{D}\{\langle$ ssep $\rangle\}\{\langle$ osep $\rangle\}\{\langle$ places $\rangle\}$ | Column entries aligned on a 'decimal point' |

```
A & B & C \\
100 & 10 & 1 \\ \bottomrule
\end{tabular}
\end{center}
```

| A | $\mathbf{B}$ | $C$ |
| :---: | :--- | :--- |
| 100 | $\mathbf{1 0}$ | 1 |

- In columns which have been generated with $\mathrm{p}, \mathrm{m}$ or b , the default value of $\backslash$ parindent is 0 pt .
$\backslash$ begin\{center\}
\begin\{tabular\}\{m\{1cm\}m\{1cm\}m\{1cm\}\} \toprule }
$\begin{array}{lllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array} \&$
22222222 \&
3333 <br> \bottomrule
\end\{tabular\} }
\end\{center\} }

| 1111 | 2222 | 3333 |
| :---: | :---: | :---: |
| 1111 |  |  |
| 1111 |  |  |

The $\backslash$ parindent can be changed with, for example $>\{\backslash$ setlength $\{\backslash$ parindent $\}\{1 \mathrm{~cm}\}\}$ p. $\backslash$ begin\{center\}
\begin\{tabular\}\{>\{\setlength\{\parindent\}\{5mm\}pp\{2cm\} p\{2cm\}\} \toprule }
12345678901234567890 \&
$12345678901234567890 \backslash \backslash$ bottomrule
\end\{tabular\} }
\end\{center\} }
123451234567
67890128901234
3456789567890
0

- The specification $>\{\$\} c<\{\$\}$ generates a column in math mode in a tabular environment. When used in an array environment the column is in LR mode (because the additional \$'s cancel the existing \$'s).
- Using $c!\{\backslash h s p a c e\{1 \mathrm{~cm}\}\} c$ you get space between two columns which is enlarged by one centimeter, while $c @\{\backslash h s p a c e\{1 \mathrm{~cm}\}\} c$ gives you exactly one centimeter space between two columns.
- Elsewhere reasons are given why you should not use vertical lines (e.g., the | option) in tables. Any examples that use vertical lines are for illustrative purposes only where it is advantageous to denote column boundaries, for example to show different spacing effects.


## D column specifiers

In financial tables dealing with pounds and pence or dollars and cents, column entries should be aligned on the separator between the numbers. The D column specifier is provided for columns which are to be aligned on a 'decimal point'. The specifier takes three arguments.

$$
\mathrm{D}\{\langle\text { ssep }\rangle\}\{\langle\text { osep }\rangle\}\{\langle\text { places }\rangle\}
$$

$\langle s s e p\rangle$ is the single character which is used as the separator in the source .tex file. Thus it will usually be '.' or ','.
$\langle o s e p\rangle$ is the separator in the output, this may be the same as the first argument, but may be any math-mode expression, such as \cdot. A D column always uses math mode for the digits as well as the separator.
$\langle$ places $\rangle$ should be the maximum number of decimal places in the column (but see below for more on this). If this is negative, any number of decimal places can be used in the column, and all entries will be centred on (the leading edge of) the separator. Note that this can cause a column to be too wide; for instance, compare the first two columns in the example below.

Here are some example specifications which, for convenience, employ the \newcolumntype macro described later.
\newcolumntype\{d\}[1] \{D\{.\}\{\cdot\}\{\#1\}\}
This defines $d$ to be a column specifier taking a single argument specifying the number of decimal places, and the .tex file should use '.' as the separator, with \cdot (.) being used in the output.

## \newcolumntype\{.\}\{D\{.\}\{.\}\{-1\}\}

The result of this is that '.' specifies a column of entries to be centered on the ' $\therefore$ '
\newcolumntype $\{\},\{D\{\},\{\},\{2\}\}$
And the result of this is that ',' specifies a column of entries with at most two decimal places after a ','.

The following table is typeset from this code:

| $\backslash$ begin\{center\} |  |  |  |  | | | | |
|---|---|---|---|---|---|---|---|---|
| \begin\{tabular\}\{\|d\{-1\}|d\{2\}|.|, |\} } |  |  |  |  |
| 1.2 | \& 1.2 | \&1.2 | \&1,2 |  |
|  |  |  |  |  |
| 1.23 | \& 1.23 | \&12.5 | \& 300,2 | \1 |
| 1121.2\& | 2\& 1121. | $2 \& 861.20$ | \&674,29 | \1 |
| 184 | \& 184 | \&10 | \&69 | \1 |
| . 4 | \& . 4 | \& | \&, 4 | \1 |
|  | \& | \& 4 | \& |  |
| \end\{tabular\} } |  |  |  |  |
| \end\{center\} } |  |  |  |  |


| $1 \cdot 2$ | $1 \cdot 2$ | 1.2 | 1,2 |
| :---: | :---: | :---: | :---: |
| $1 \cdot 23$ | $1 \cdot 23$ | 12.5 | 300,2 |
| $1121 \cdot 2$ | $1121 \cdot 2$ | 861.20 | 674,29 |
| 184 | 184 | 10 | 69 |
| $\cdot 4$ | $\cdot 4$ |  | , 4 |

Note that the first column, which had a negative $\langle$ places $\rangle$ argument is wider than the second column, so that the decimal point appears in the middle of the column.

The third $\langle$ places $\rangle$ argument may specify both the number of digits to the left and to the right of the decimal place. The third column in the next table below is set with $D\{\}.\{\}.\{5.1\}$ and in the second table, $D\{\}.\{\}.\{1.1\}$, to specify 'five places to the left and one to the right' and 'one place to the left and one to the right' respectively. (You may use ',' or other characters, not necessarily '.' in this argument.) The column of figures is then positioned such that a number with the specified numbers of digits is centred in the column.

If you have table headings (inserted with \multicolumn\{1\}\{c\}\{...\} to over-ride the D column type) then it may be that neither of the above 'centred' or 'right aligned' forms is quite what you want.

```
\begin{center}\small
\begin{tabular}[t]{|D..{-1}|D..{1}|D..{5.1}|}
\multicolumn{1}{|c|}{head}&
\multicolumn{1}{c|}{head}&
\multicolumn{1}{c|}{head}\\[3pt]
 1.2 & 1.2 &1.2 \\
 11212.2& 11212.2&11212.2 \\
 .4 & . }4\mathrm{ &.4
 \end{tabular}
 \hfill
 \begin{tabular}[t]{|D..{-1}|D..{1}|D..{1.1}|}
```

```
\multicolumn{1}{|c|}{wide heading}&
\multicolumn{1}{c|}{wide heading}&
\multicolumn{1}{c|}{wide heading}\\\[3pt]
 1.2 & 1.2 &1.2 \\
 .4 & . }4\mathrm{ &. }
 \end{tabular}
 \end{center}
```

| head | head | head | wide heading | wide heading | wide heading |  |
| ---: | ---: | ---: | ---: | :---: | ---: | :---: |
| 1.2 | 1.2 | 1.2 |  | 1.2 | 1.2 | 1.2 |
| 11212.2 | 11212.2 | 11212.2 | .4 | .4 |  |  |

In both of these tables the first column is set with $\mathrm{D}\{\}.\{\}.\{-1\}$ to produce a column centered on the '.', and the second column is set with $D\{\}.\{\}.\{1\}$ to produce a right aligned column.

The centered (first) column produces columns that are wider than necessary to fit in the numbers under a heading as it has to ensure that the decimal point is centered. The right aligned (second) column does not have this drawback, but under a wide heading a column of small right aligned figures is somewhat disconcerting.

The notation for the $\langle$ places $\rangle$ argument also enables columns that are centred on the mid-point of the separator, rather than its leading edge; for example $D\{+\}\{\backslash, \backslash p m \backslash\},\{3,3\}$ will give a symmetric layout of up to three digits on either side of $a \pm$ sign.

## Defining new column specifiers

You can easily type
$>\{\langle$ some declarations $\rangle\}\{\mathrm{c}\}<\{\langle$ some more declarations $\rangle\}$
when you have a one-off column in a table, but it gets tedious if you often use columns of this form. The \newcolumntype lets you define a new column option like, say
$\backslash$ newcolumntype $\{\mathrm{x}\}\{>\{\langle$ some declarations $\rangle\}\{\mathrm{c}\}<\{\langle$ some more declarations $\rangle\}\}$ and you can then use the x column specifier in the preamble wherever you want a column of this kind.
\newcolumntype\{〈char $\rangle\}[\langle$ nargs $\rangle]\{\langle$ spec $\rangle\}$

The $\langle$ char $\rangle$ argument is the character that identifies the option and $\langle$ spec $\rangle$ is its specification in terms of the regular preamble options. The \newcolumntype command is similar to \newcommand - $\langle s p e c\rangle$ itself can take arguments with the optional $\langle n a r g s\rangle$ argument declaring their number.

For example, it is commonly required to have both math-mode and text columns in the same alignment. Defining:

[^30]Then C can be used to get centred text in an array, or centred math-mode in a tabular. Similarly L and R are for left- and right-aligned columns.

The $\langle s p e c\rangle$ in a $\backslash$ newcolumntype command may refer to any of the primitive column specifiers (see table 12.1 on page 156 ), or to any new letters defined in other $\backslash$ newcolumntype commands.

```
\showcols
```

A list of all the currently active \newcolumntype definitions is sent to the terminal and log file if the \showcols command is given.

## Notes

- A preamble of the form $\{w x *\{0\}\{a b c\} y z\}$ is treated as $\{w x y z\}$
- An incorrect positional argument, such as [Q], is treated as [t].
- A preamble such as $\{c c *\{2\}\}$ with an error in a $*$-form will generate an error message that is not particularly helpful.
- Error messages generated when parsing the column specification refer to the preamble argument after it has been re-written by the \newcolumntype system, not to the preamble entered by the user.
- Repeated $<$ or $>$ constructions are allowed. $>\{\langle\operatorname{decs} 1\rangle\}\rangle\{\langle$ decs 2$\rangle\}$ is treated the same as $>\{\langle$ decs2 $\rangle\}\{\langle$ decs 1$\rangle\}$.
The treatment of multiple < or > declarations may seem strange. Using the obvious ordering of $>\{\langle$ decs 1$\rangle\}\{\langle$ decs 2$\rangle\}$ has the disadvantage of not allowing the settings of a \newcolumntype defined using these declarations to be overriden.
- The \extracolsep command may be used in @-expressions as in standard LaTeX, and also in !-expressions.
The use of \extracolsep is subject to the following two restrictions. There must be at most one \extracolsep command per @, or ! expression and the command must be directly entered into the @ expression, not as part of a macro definition. Thus
\newcommand\{\ef\}\{\extracolsep\{\fill\}\} ... ©\{\ef\}
does not work. However you can use something like
\newcolumntype\{e\}\{@\{\extracolsep\{\fill\}\}
instead.
- As noted by the LaTeX book, a \multicolumn, with the exception of the first column, consists of the entry and the following inter-column material. This means that in a tabular with the preamble $|l| l|l| l \mid$ input such as $\backslash$ multicolumn $\{2\}\{|c|\}$ in anything other than the first column is incorrect.
In the standard array/tabular implementation this error is not noticeable as a $\mid$ takes no horizontal space. But in the class the vertical lines take up their natural width and you will see two lines if two are specified - another reason to avoid using I.


### 12.4 The array environment

Mathematical arrays are usually produced using the array environment.

```
\[\begin{array}[\langlepos\rangle]{\langlepreamble}} rows \end{array} \]
\[\begin{array}[\langlepos\rangle]{left\rangle{\langlepreamble\rangle}\langleright\rangle rows \end{array} \]
```

Math formula are usually centered in the columns, but a column of numbers often looks best flush right, or aligned on some distinctive feature. In the latter case the D column scheme is very handy.

```
\[\begin\{array\}\{lcr\} }
 \(\mathrm{a}+\mathrm{b}+\mathrm{c} \& \mathrm{~d}-\mathrm{e}-\mathrm{f} \& 123\) \}
 \(\mathrm{g}-\mathrm{h}\) \& jk \& 45 \}
 \(1 \quad \& \quad m \quad \& 6\)
\end\{array\} \] }
```

$$
\begin{array}{lcr}
a+b+c & d-e-f & 123 \\
g-h & j k & 45 \\
l & m & 6
\end{array}
$$

Arrays are often enclosed in brackets or vertical lines or brackets or other symbols to denote math constructs like matrices. The delimeters are often large and have to be indicated using \left and \right commands.

$$
\left[ \begin\{array\}\{cc\} }
```
x_{1} & x_{2} \\
 x_{3} & x_{4}
 \end{array} \right]
$$

```
\[
\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right]
\]

The array environment is an extension of the standard environment in that it provides a a system of implicit \left \right pairs. If you want an array surrounded by parentheses, you can enter:
\[
\begin{gathered}
\backslash\left[\right.\text { \begin\{array\}(\{cc\})a\&b\\
c\&d\end\{array\} } \backslash ] } \\
{ ( \begin{array} { c c } 
{ a } & { b } \\
{ c } & { d }
\end{array} ) }
\end{array}}
\end{gathered}
\]

Or, a litle more complex
\[ \begin\{array\}(\{c\}) }
\begin\{array\}|\{cc\}| }
\(x_{-}\{1\}\) \& \(x_{-}\{2\}\) \\
\(x_{-}\{3\} \& x_{-}\{4\}\)
\end\{array\} \\}
y \\
z
\end\{array\} \] }
\[
\left(\begin{array}{c}
\left|\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right| \\
y \\
z
\end{array}\right)
\]

Similarly an environment equivalent to plain TeX's \cases could be defined by:
```

$$
f(x)=\begin{array}\{{1L}.
 0 &if $x=0$\\
 \sin(x)/x&otherwise
 \end{array}
$$

 f(x)={{ll}\begin{array}{ll}{0}&{\mathrm{ if }x=0}\\{\operatorname{sin}(x)/x}&{\mathrm{ otherwise}}
    ```

Here \(L\) denotes a column of left aligned L-R text, as described earlier. Note that as the delimiters must always be used in pairs, the '.' must be used to denote a 'null delimiter'.

This feature is especially useful if the [t] or [b] arguments are also used. In these cases the result is not equivalent to surrounding the environment by \left... \right, as can be seen from the following example:
```

$$
\begin{array}[t]({c}) 1\\2\\3 \end{array}
$$
$$
\begin{array}[c]({c}) 1\\2\\3 \end{array}
$$
$$
\begin{array}[b]({c}) 1\\2\\3 \end{array}
$$
\quad\mbox{not}\quad
\left($$
\begin{array}[t]{c} 1\\2\\3 \end{array}
$$\right)
\left($$
\begin{array}[c]{c} 1\\2\\3 \end{array}
$$\right)
\left($$
\begin{array}[b]{c} 1\\2\\3 \end{array}
$$\right)
($$
\begin{array}{l}{1}\\{2}\\{3}\end{array}
$$)($$
\begin{array}{l}{1}\\{2}\\{3}\end{array}
$$)($$
\begin{array}{l}{1}\\{2}\\{3}\end{array}
$$) not}($$
\begin{array}{l}{}\\{1}\\{2}\\{3}\end{array}
$$)($$
\begin{array}{l}{1}\\{2}\\{3}\end{array}
$$)($$
\begin{array}{l}{1}\\{2}\\{3}\\{}\end{array}
$$

```

\subsection*{12.5 Tables}

A table is one way of presenting a large amount of information in a limited space. Even a simple table can presents facts that could require several wordy paragraphs - it is not only a picture that is worth a thousand words.

A table should have at least two columns, otherwise it is really a list, and often has more. The leftmost column is often called the stub and it typically contains a vertical listing of the information categories in the other columns. The columns have heads (or headings) at the top indicating the nature of the entries in the column, although it is not always necessary to provide a head for the stub if the heading is obvious from the table's caption. Column heads may include subheadings, often to specify the unit of measurement for numeric data.

A less simple table may need two or more levels of headings, in which case decked heads are used. A decked head consists of a spanner head and the two or more column heads it applies to. A horizontal spanner rule is set between the the spanner and column heads to show the columns belonging to the spanner.

Double decking, and certainly triple decking or more, should be avoided as it can make it difficult following them down the table. It may be possible to use a cut-in head instead of double decking. A cut-in head is one that cuts across the columns of the table and applies to all the matter below it.

No mention has been made of any vertical rules in a table, and this is deliberate. There should be no vertical rules in a table. Rules, if used at all, should be horizontal only, and

Table 12.2: Two views of one table
(a) Before
(b) After
\begin{tabular}{||l|lr||}
\hline \multirow{2}{*}{ gnats } & gram & \(\$ 13.65\) \\
\cline { 2 - 3 } & each & .01 \\
\hline gnu & stuffed & 92.50 \\
emu & & 33.33 \\
\hline armadillo & frozen & 8.99 \\
\hline
\end{tabular}
\begin{tabular}{llr}
\hline \multicolumn{2}{c}{ Item } & \\
\cline { 1 - 2 } Animal & Description & Price \((\$)\) \\
\hline Gnat & per gram & 13.65 \\
& each & 0.01 \\
Gnu & stuffed & 92.50 \\
Emu & stuffed & 33.33 \\
Armadillo & frozen & 8.99 \\
\hline
\end{tabular}
these should be single, not double or triple. It's not that ink is expensive, or that practically no typesetting is done by hand any more, it's that the visual clutter should be eliminated.

For example, in Table 12.2 . Table \(12.2(\mathrm{a})\) is from the LaTeX book and Table \(12.2(\mathrm{~b})\) is how Simon Fear Fea03 suggests it should be cleaned up.
```

Table 1: Two views of one table\subtop[Before]{%
| gnats | gram | \$13.65 |
| :--- | :--- | ---: |
| | each | .01 |
| gnu | stuffed | 92.50 |
| emu | | 33.33 |
| armadillo | frozen | 8.99 |}
\hfill
\subtop[After]{%
| \toprule{Item} | | |
| :--- | :--- | ---: |
| \cmidrule(r){1-2} Animal | Description | Price (\$) |
| \midrule Gnat | per gram | 13.65 |
| | each | 0.01 |
| Gnu | stuffed | 92.50 |
| Emu | stuffed | 33.33 |
| Armadillo | frozen | 8.99 |
| \bottomrule | | |
}


```

\section*{Fear's rules}

Simon Fear disapproves of the default LaTeX table rules and wrote the booktabs package Fea03] to provide better horizontal rules. Like many typographers, he abhors vertical rules.

In a simple case a table begins with a \toprule, has a single row of column headings, then a dividing rule called here a \midrule; after the columns of data the table is finished off with a \bottomrule. Most book publishers set the \toprule and \bottomrule heavier (i.e., thicker, or darker) than the intermediate \midrule.
```

\toprule[\langlewd\rangle] \bottomrule[\langlewd\rangle] \heavyrulewidth
\midrule[\langlewd\rangle] \lightrulewidth

```

The rule commands here all take a default width (thickness) which may be reset within the document. For the top and bottom rules this is \heavyrulewidth and for midrules it is \lightrulewidth (fully described below). In very rare cases where you need to have a special width, you may use the optional argument \(\langle w d\rangle\) length argument.

The rule commands go immediately after the closing \(\backslash \backslash\) of the preceding row (except of course \toprule, which comes right after the \tabular\{\} command); in other words, exactly where plain LaTeX allows \hline or \cline.
\[
\text { \cmidrule }[\langle w d\rangle](\langle\text { trim }\rangle)\{\langle a-b\rangle\} \backslash \text { cmidrulewidth }
\]

Similar to the normal \cline macro, \cmidrule draws a rule across the columns (numbered) \(\langle a-b\rangle\). Generally, this rule should not come to the full width of the end columns, and this is especially the case when we need to begin a \cmidrule straight after the end of another one. The optional 'trimming' commands, which are ( \(r\) ), ( \(l\) ) and ( \(r l\) ) or (lr), indicate whether the right and/or left ends of the rule should be trimmed. Note the exceptional use of parentheses instead of braces or brackets for this optional argument. For example, the code
\cmidrule(r)\{1-2\} is used for Table \(12.2(\mathrm{~b})\).

The default width is \(\backslash\) cmidrulewidth but the optional \(\langle w d\rangle\) argument can be used to override this.

An example of the commands in use is given by the code used to produce the 'after' example in Table 12.2(b) above.

Occasionally extra space is required between certain rows of a table; for example, before the last row when it is a total of numbers above. This is simply a matter of inserting \addlinespace after the \\ alignment marker.
\addlinespace[ \(\langle w d\rangle\) ] \defaultaddspace

Think of \addlinespace as being a white rule of width \(\langle w d\rangle\). The default space is \defaultaddspace which gives rather less than a whole line space.
\[
\text { \specialrule }\langle\langle w d\rangle\}\{\langle\text { abovespace }\rangle\}\{\langle\text { belowspace }\rangle\}
\]

You should not use double rules in a table; use rules with different thicknesses instead. The specialrule can be used for drawing rules with special thickness and spacing. However, the rules already described should be sufficient without having to resort to \specialrule.

\section*{\morecmidrules}

Nevertheless, if you insist on having double \cmidrules you will need the extra command \morecmidrules to do so properly, because two \cmidrules in a row calls for two rules on the same 'rule row'. Thus in
\cmidrule\{1-2\}\cmidrule\{1-2\}
the second command writes a rule that just overwrites the first one. Use
\cmidrule\{1-2\}\morecmidrules\cmidrule\{1-2\}
which gives you a double rule between columns one and two, separated by \(\backslash\) cmidrulesep. Finish off a whole row of rules before giving the \morecmidrules command. Note that \morecmidrules has no effect whatsoever if it does not immediately follow a \cmidrule (i.e., it is not a general space-generating command).

The new rule commands are not guaranteed to work with \hline or \cline. More significantly the rules generated by the new commands are pretty well guaranteed not to connect with verticals generated by \(\{1\}\) characters in the preamble. This is a feature you should not use vertical rules in tables.

\section*{Tabular environments}
```

$$
\begin{tabular}[\langlepos\rangle]{\langlepreamble\rangle} rows \end{tabular}
$$

$$
\begin{tabular*}{\langle~width\rangle}[\langlepos\rangle]{\langlepreamble\rangle} rows \end{tabular*}
$$
$$
\begin{tabularx}{\langlewidth\rangle}[\langlepos\rangle]{\langlepreamble\rangle} rows \end{tabularx}
$$

```

A table created using the tabular environment comes out as wide as it has to be to accomodate the entries. On the other hand, both the tabular* and tabularx environments let you specify the overall width of the table via the additional \(\langle w i d t h\rangle\) atrgument.

The tabular* environment makes any necessary adjustment by altering the intercolumn spaces while the tabularx environment alters the column widths. Those columns that can be adjusted are noted by using the letter X as the column specifier in the \(\langle\) preamble \(\rangle\). Once the correct column widths have been calculated the X columns are converted to p columns.

The following code is used for a regular tabular.
```

| Multicolumn entry! | | THREE | FOUR |
| :---: | :--- | :---: | :--- |
| one | \raggedright\arraybackslash The width of this column is fixed (5.5pc). | three | \raggedright\arraybackslash Column four will act in the same way as column two, with the same width. |


```
\begin{tabular}{|c|c|c|l|}
\hline \multicolumn{2}{|c|}{ Multicolumn entry! } & THREE & FOUR \\
\hline one & \begin{tabular}{l} 
The width of \\
this column is \\
fixed \((5.5 \mathrm{pc})\).
\end{tabular} & three & \begin{tabular}{l} 
Column four \\
will act in the \\
same way as \\
column two, \\
with the same \\
width.
\end{tabular} \\
\hline
\end{tabular}

The following examples use virtually the same contents, the major differences are the specifications of the environment.

The following tabularx is set with
\(\backslash\) begin\{tabularx \(\}\{250 \mathrm{pt}\}\{|\mathrm{c}| \mathrm{X}|\mathrm{c}| \mathrm{X} \mid\}\)
and the result is:
\begin{tabular}{|c|l|c|l|}
\hline \multicolumn{2}{|c|}{ Multicolumn entry! } & THREE & FOUR \\
\hline one & \begin{tabular}{l} 
The width of \\
this column \\
depends on the \\
width of the \\
table. \({ }^{1}\)
\end{tabular} & three & \begin{tabular}{l} 
Column four will \\
act in the same \\
way as column \\
two, with the \\
same width.
\end{tabular} \\
\hline
\end{tabular}

The following tabular* is set with
\begin\{tabular*\}\{250pt\}\{|c|p\{5.5pc\}|c|p\{5.5pc\}|\} }
Notice that there is no X column; the total width required for the tabular is less than the specfied width and hence the horizontal lines spill over the right hand end of the apparent tabular width.
\begin{tabular}{|c|l|c|l|l}
\hline \multicolumn{2}{|c|}{ Multicolumn entry! } & THREE & FOUR & \\
\hline one & \begin{tabular}{l} 
The width of \\
this column is \\
fixed (5.5pc).
\end{tabular} & three & \begin{tabular}{l} 
Column four \\
will act in the \\
same way as \\
column two, \\
with the same \\
width.
\end{tabular} & \\
\hline
\end{tabular}

The next tabular* table is set with
\begin\{tabular*\}\{300pt\}\{|@\{\extracolsep\{\fill\}\}c|p\{5.5pc\}|c|p\{5.5pc\}|\} }
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Multicolumn entry! } & THREE & FOUR \\
\hline one & \begin{tabular}{l} 
The width of \\
this column's \\
text is fixed
\end{tabular} & three & \begin{tabular}{l} 
Column four \\
will act in the \\
\\
\end{tabular} \\
& (5.5pc). & & \begin{tabular}{l} 
same way as \\
column two, \\
with the same \\
width.
\end{tabular} \\
\hline
\end{tabular}

The following tabularx is set with

\footnotetext{
\({ }^{1}\) You can use footnotes in a tabularx!
}
\begin\{tabularx\}\{300pt\}\{|c|X|c|X|\} }
the result is:
\begin{tabular}{|l|l|c|l|}
\hline \multicolumn{2}{|c|}{ Multicolumn entry! } & THREE & FOUR \\
\hline one & \begin{tabular}{l} 
The width of this \\
column depends on \\
the width of the table.
\end{tabular} & three & \begin{tabular}{l} 
Column four will act \\
in the same way as \\
column two, with the \\
same width.
\end{tabular} \\
\hline
\end{tabular}

The main differences between the tabularx and tabular* environments are:
- tabularx modifies the widths of the columns, whereas tabular* modifies the widths of the inter-column spaces.
- tabular and tabular* environments may be nested with no restriction, however if one tabularx environment occurs inside another, then the inner one must be enclosed by \{ \}.
- The body of the tabularx environment is in fact the argument to a command, and so certain constructions which are not allowed in command arguments (like \verb) may not be used. \({ }^{2}\)
- tabular* uses a primitive capability of TeX to modify the inter column space of an alignment. tabularx has to set the table several times as it searches for the best column widths, and is therefore much slower. Also the fact that the body is expanded several times may break certain TeX constructs.

\section*{\tracingtabularx}

Following the \tracingtabularx declaration all later tabularx environments will print information about column widths as they repeatedly re-set the tables to find the correct widths.

By default the X specification is turned into \(\mathrm{p}\{\langle\) some value \(\rangle\}\). Such narrow columns often require a special format, which can be achieved by using the > syntax. For example, \(>\{\backslash\) small \(\}\) X. Another format which is useful in narrow columns is ragged right, however LaTeX's \raggedright macro redefines \\
\in a way which conflicts with its use in tabular or array environments.

\section*{\arraybackslash}

For this reason the command \arraybackslash is provided; this may be used after a \raggedright, \raggedleft or \centering declaration. Thus a tabularx preamble may include

\section*{>\{\raggedright\arraybackslash\}X}

These preamble specifications may of course be saved using the command, \newcolumntype. After specifying, say,
\newcolumntype\{Y\}\{>\{\small\raggedright \(\backslash\) arraybackslash \(\}\) X\}
then \(Y\) could be used in the tabularx preamble argument.

\footnotetext{
\({ }^{2}\) Actually, verb and verb* may be used, but they may treat spaces incorrectly, and the argument can not contain an unmatched \{ or \}, or a \% character.
}

\section*{\tabularxcolumn}

The \(X\) columns are set using the \(p\) column, which corresponds to \(\backslash p a r b o x[t]\). You may want them set using, say, the m column, which corresponds to \parbox[c]. It is not possible to change the column type using the > syntax, so another system is provided. \tabularxcolumn should be defined to be a macro with one argument, which expands to the tabular preamble specification that you want to correspond to X . The argument will be replaced by the calculated width of a column.

The default definition is
\newcommand\{\tabularxcolumn\}[1]\{p\{\#1\}\}
This may be changed, for instance
\renewcommand\{\tabularxcolumn\}[1]\{>\{\small\}m\{\#1\}\}
so that \(X\) columns will be typeset as \(m\) columns using the \small font.
Normally all \(X\) columns in a single table are set to the same width, however it is possible to make tabularx set them to different widths. A preamble argument of
\(\{>\{\backslash\) hsize \(=.5 \backslash\) hsize \(\} X>\{\backslash\) hsize \(=1.5 \backslash\) hsize \(\} \times\}\)
specifies two columns, the second will be three times as wide as the first. However if you want to play games like this you should follow the following two rules.
1. Make sure that the sum of the widths of all the \(X\) columns is unchanged. (In the above example, the new widths still add up to twice the default width, the same as two standard X columns.)
2. Do not use \multicolumn entries which cross any \(X\) column.

As with most rules, these may be broken if you know what you are doing.
It may be that the widths of the 'normal' columns of the table already total more than the requested total width. tabularx refuses to set the X columns to a negative width, so in this case you get a warning "X Columns too narrow (table too wide)".

The X columns will in this case be set to a width of 1 em and so the table itself will be wider than the requested total width given in the argument to the environment.

The standard \verb macro does not work inside a tabularx, just as it does not work in the argument to any macro.

\section*{\TX@verb}
\TX@verb is the 'poor man's \verb' and is based on page 382 of the TeXBook. As explained there, doing verbatim this way means that spaces are not treated correctly, and so a \verb* version may well be useless. The mechanism is quite general, and any macro which wants to allow a form of \verb to be used within its argument may
\let \(\backslash\) verb=\TX@verb
It must ensure that the real definition is restored afterwards.
This version of \verb is subject to the following restictions:
1. Spaces in the argument are not read verbatim, but may be skipped according to TeX 's usual rules.
2. Spaces will be added to the output after control words, even if they were not present in the input.
3. Unless the argument is a single space, any trailing space, whether in the original argument, or added as in (2), will be omitted.
4. The argument must not end with \(\backslash\), so \verb|\| is not allowed, however, because of (3), \verb \\ | produces \.
5. The argument must be balanced with respect to \{ and \}. So \verb|\{| is not allowed.
6. A comment character like \(\%\) will not appear verbatim. It will act as usual, commenting out the rest of the input line!
7. The combinations ?' and !' will appear as \(i\) and \(i\) if the cmtt font is being used.

\subsection*{12.6 Free tabulars}

All the tabular environments described so far put the table into a box, which LaTeX treats like a large, even though complex, character, and characters are not broken across pages. If you have a long table that runs off the bottom of the page you can turn to, say, the longtable Car98b or xtab Wil00e packages which will automatically break tables across page boundaries. These have various bells and whistles, such as automatically putting on a caption at the top of each page, repeating the column heads, and so forth.

\section*{Continuous tabulars}
```

$$
\begin{ctabular}[\langlepos\rangle]{\langlepreamble\rangle} rows \end{ctabular}
$$
$$
\begin{ctabular*}[\langlepos\rangle]{\langlewidth\rangle}{\langlepreamble\rangle} rows \end{ctabular*}
$$

```

The ctabular environment is similar to tabular, but with a few differences, the main one being that the table will merrily continue across page breaks. The \(\langle\) preamble〉 argument is the same as for the previous array and tabular environments, but the optional \(\langle p o s\rangle\) argument controls the horizontal position of the table, not the vertical. The possible argument values are 1 (left justified), c (centered), or r (right justified); the default is c.
```

\begin\{ctabular\}\{lcr\} \toprule }
LEFT \& CENTER \& RIGHT
 \midrule
$1 \& c \& r \backslash$
$1 \& c \& r \backslash$
$1 \& c \& r \backslash$
$1 \& c \& r$
 \bottomrule
\end\{ctabular\} }

```
\begin{tabular}{lcr}
\hline LEFT & CENTER & RIGHT \\
\hline l & c & r \\
\hline
\end{tabular}

The ctabular environment will probably not be used within a table environment (which defeats the possibility of the table crossing page boundaries). To caption a ctabular you can define a fixed caption. For example:
\newfixedcaption\{\freetabcaption\}\{table\}
And then \freetabcaption can be used like the normal \caption within a table float.

\section*{Automatic tabulars}

A tabular format may be used just to list things, for example the names of the members of a particular organisation, or the names of LaTeX environments.

Especially when drafting a document, or when the number of entries is likely to change, it is convenient to be able to tabulate a list of items without having to explicitly mark the end of each row.
```

\autorows [\langlewidth\rangle]{\langlepos\rangle}{\langlenum\rangle}{\langlestyle\rangle}{\langleentries\rangle}

```

The \autorows macro lists the \(\langle\) entries〉 in rows; that is, the entries are typeset left to right and top to bottom. The table below was set by \autorows using:
```

\freetabcaption{Example automatic row ordered table}
\autorows{c}{5}{c}{one, two, three, four, five,
six, seven, eight, nine, ten,
eleven, twelve, thirteen, fourteen }

```

Table 12.3: Example automatic row ordered table
\begin{tabular}{ccccc} 
one & two & three & four & five \\
six & seven & eight & nine & ten \\
eleven & twelve & thirteen & fourteen &
\end{tabular}

The \(\langle p o s\rangle\) ( \(\mathrm{l}, \mathrm{c}\), or r ) argument controls the horizontal position of the tabular and \(\langle\) num \(\rangle\) is the number of columns. The \(\langle\) style \(\rangle(1, \mathrm{c}\), or r ) argument specifies the location of the entries in the columns; each column is treated identically. The \(\langle\) entries \(\rangle\) argument is a comma-separated list of the names to be tabulated; there must be no comma after the last of the names before the closing brace.

Each column is normaly the same width which is large enough to accomodate the widest entry in the list. A positive \(\langle\) width \(\rangle\) (e.g., [0.8\textwidth]), defines the overall width of the table, and the column width is calculated by dividing \(\langle\) width \(\rangle\) by the number of columns. Any negative value for the \(\langle\) width \(\rangle\) width lets each column be wide enough for the widest entry in that column; the column width is no longer a constant.

The next examples illustrate the effect of the \(\langle\) width \(\rangle\) argument (the default value is \(0 \mathrm{pt})\).
```

\freetabcaption{Changing the width of a row ordered table}
\autorows[-1pt]{c}{5}{c}{one, two, three, four, five,
six, seven, eight, nine, ten,
eleven, twelve, thirteen, fourteen }
\autorows[0pt]{c}{5}{c}{one, two, three, four, five, ... }
\autorows[0.9\textwidth]{c}{5}{c}{one, two, three, four, five, ... }

```

Table 12.4: Changing the width of a row ordered table
\begin{tabular}{cccccc} 
& \begin{tabular}{c} 
one \\
six
\end{tabular} & two & three & four & five \\
eight & nine & ten & \\
& eleven twelve & thirteen & fourteen & & \\
one & two & three & four & five \\
six & seven & eight & nine & ten
\end{tabular}
\begin{tabular}{ccccc} 
& eleven & twelve & thirteen & fourteen \\
one & two & three & four & five \\
six & seven & eight & nine & ten \\
eleven & twelve & thirteen & fourteen & \\
\hline \autocols \([\langle\) width \(\rangle]\{\langle\) pos \(\rangle\}\{\langle\) num \(\rangle\}\{\langle\) style \(\rangle\}\{\langle\) entries \(\rangle\}\) & \\
\hline
\end{tabular}

The \autocols macro lists its \(\langle\) entries \(\rangle\) in columns, proceeding top to bottom and left to right. The arguments, except for \(\langle w i d t h\rangle\), are the same as for \autorows. The column width is always constant throughout the table and is normally sufficient for the widest entry. A positive \(\langle w i d t h\rangle\) has the same effect as for \autorows but a negative value is ignored.

If you need to include a comma within one of the entries in the list for either \autorows or \autocols you have to use a macro. For instance:
\newcommand \(*\) \\comma\}\{,\}
The following examples illustrate these points.
\(\backslash f r e e t a b c a p t i o n\{C h a n g i n g ~ t h e ~ w i d t h ~ o f ~ a ~ c o l u m n ~ o r d e r e d ~ t a b l e\} ~\)
\autocols\{c\}\{5\}\{c\}\{one\comma\{\} two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen \}
\autocols[0.9\textwidth] \(\{c\}\{5\}\{c\}\{o n e \backslash c o m m a\}\) two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen \}

Table 12.5: Changing the width of a column ordered table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & one, two three four & five six seven & \begin{tabular}{l}
eight \\
nine \\
ten
\end{tabular} & eleven twelve & & \\
\hline one, two & & five & eight & & eleven & thirteen \\
\hline three & & six & nine & & twelve & fourteen \\
\hline four & & seven & ten & & & \\
\hline
\end{tabular}

\subsection*{12.7 Spacing}

Sometimes tabular rows appear vertically challenged.

\section*{\extrarowheight}

The length called \extrarowheight can be set to modify the normal height of tabular (and array) rows. If it is a positive length, the value is added to the normal height of every row of the table, while the depth will remain the same. This is important for tables with horizontal lines because those lines normally touch the capital letters. For example, \setlength\{\extrarowheight\}\{1pt\} was used in the definition of Table 12.1 .

\section*{Special variations of \(\backslash \mathrm{hline}\)}

The family of tabular environments allows vertical positioning with respect to the baseline of the text in which the environment appears. By default the environment appears centered,
but this can be changed to align with the first or last line in the environment by supplying a t or b value to the optional position argument. However, this does not work when the first or last element in the environment is a \hline command-in that case the environment is aligned at the horizontal rule.

Here is an example:
\begin{tabular}{|c|c|c|c|}
\hline Tables & with no & versus & Tables \\
\hline & hline commands used & & \begin\{tabular\}[t]\{l\} } with no\\ hline \\ commands \\ used \end\{tabular\} versus tables } \\
\hline tables & & used. & \(\backslash\) begin\{tabular\}[t]\{|l|\} \\
\hline & with some & & \hline \\
\hline & hline & & with some \\ hline \\ commands \\ \\
\hline & commands & & \(\backslash \mathrm{hline}\) \\
\hline & & & \end\{tabular\} used. } \\
\hline
\end{tabular}
```

\firsthline \lasthline
\extratabsurround

```

Using \firsthline and \lasthline will cure the problem, and the tables will align properly as long as their first or last line does not contain extremely large objects.
\begin{tabular}{|c|c|c|c|}
\hline Tables & with no & versus & Tables \\
\hline & line commands used & & \begin\{tabular\}[t]\{l\} } with no\\ line \\ commands \\ used \end\{tabular\} versus tables } \\
\hline tables & with some & used. & \begin\{tabular\}[t]\{|l|\} } \\
\hline & line commands & & ```
\firsthline
    with some \\ line \\ commands \\
``` \\
\hline & & & \lasthline \\
\hline & & & \end\{tabular\} used. } \\
\hline
\end{tabular}

The implementation of these two commands contains an extra dimension, which is called \extratabsurround, to add some additional space at the top and the bottom of such an environment. This is useful if such tables are nested.

\section*{Handling of rules}

There are two possible approaches to the handling of horizontal and vertical rules in tables:
1. rules can be placed into the available space without enlarging the table, or
2. rules can be placed between columns or rows thereby enlarging the table.

This class implements the second possibility while the default implementation in the LaTeX kernel implements the first concept.

With standard LaTeX adding rules to a table will not affect the width or height of the table (unless double rules are used), e.g., changing a preamble from 111 to lllll does not affect the document other than adding rules to the table. In contrast, with this class a table that just fitted the \textwidth might now produce an overfull box. (But you shouldn't have vertical rules in the first place.)

\section*{13 Margin and foot notes}

The standard classes provide the \marginpar command for putting things into the margin. The class supports two extra kinds of side notes. It also provides extended footnoting capabilities.

\subsection*{13.1 Footnotes}

A footnote can be considered to be a special kind of float that is put at the bottom of a page.

In the main text, the \footnote command puts a marker at the point where it is called, and puts the \(\langle\) text \(\rangle\), preceded by the same mark, at the bottom of the page. If the optional \(\langle n u m\rangle\) is used then its value is used for the mark, otherwise the footnote counter is stepped and provides the mark's value.

You can use \footnotemark to put a marker in the main text; the value is determined just like that for \(\backslash\) footnote. Footnote text can be put at the bottom of the page via \footnotetext; if the optional \(\langle n u m\rangle\) is given it is used as the mark's value, otherwise the value of the footnote counter is used. It may be helpful, but completely untrue, to think of \footnote being defined like:
\newcommand\{\footnote\}[1]\{\footnotemark \(\backslash\) footnotetext\{\#1\}\}
\[
\text { \footref }\{\langle\text { label }\rangle\}
\]

On occasions it may be desireable to make more than one reference to the text of a footnote. This can be done by putting a \label in the footnote and then using \footref to refer to the label; this prints the footnote label. For example:
...\footnote\{... adults or babies.\label\{fn:rabbits\}\}
...
... The footnote \(\backslash\) footref \(\{f n: r a b b i t s\} ~ o n ~ \ p r e f\{f n: r a b b i t s\} ~ . . . ~\)
In this manual, the last line above prints:
\(\ldots\) The footnote \({ }^{33}\) on page \(13 \ldots\)
The parameters provided by the standard classes for controlling footnotes are illustrated in Figure 13.1.

Figure 13.1 - Footnote layout parameters for the standard classes
```

\footnotesep
\skip\footins

```

The length \footnotesep controls the vertical spacing between footnotes (and thanks notes), and is initialised by the class to give no extra spacing for a \(\backslash\) footnotesize font. You can change the spacing by
\addtolength\{\footnotesep\}\{...\}
The length \skip\footins defines the vertical spacing between the bottom of the main text and the top of the first line of the first footnote. Likewise this can be changed by
\addtolength\{\skip\footins\}\{...\}
The total vertical distance between the bottom of the main text and the baseline of the first line of the first footnote is \footnotesep + \skip \(\backslash\) footins.
\footnoterule
The \footnoterule macro is defined in the LaTeX kernel and redefined in the standard classes. An '@less' definition, which is slightly less efficient than that in the classes, is:
```

    \kern -3pt % call this kerna
    \hrule height 0.4pt width 0.4\columnwidth
    \kern 2.6pt % call this kernb
    }

```

This produces a horizontal rule from the left margin to \(40 \%\) of the \(\backslash\) columnwidth with thickness 0.4 pt . The rule must not take up any vertical space, which means that kerna + kernb
must equal the thickness of the rule. The rule is located a distance \skip \(\backslash\) footins + kerna below the bottom of the main text. So, to move the rule upwards, decrease the value of kerna and increase that of kernb, and the reverse to move the rule downwards.

This class provides some additional parameters but for a wider variety of footnote styles you may like to use the footmisc package [Fai00]. The additional class parameters have been chosen so as not to clash with the footmisc package. Similar concepts apply to the \thanks command described in \(\$ 7.2\) starting on page 71 .

The \(\backslash\) footnote macro essentially does three things:
- Typesets a marker at the point where \footnote is called;
- Typesets a marker at the bottom of the page on which \footnote is called;
- Following the marker at the bottom of the page, typesets the text of the footnote.

\section*{\@makefnmark}

The \footnote macro calls the kernel command \@makefnmark to typeset the footnote marker at the point where \(\backslash\) footnote is called (the value of the marker is kept in the macro \@thefnmark). The default definition typesets the mark as a superscript and is essentially
\def\@makefnmark\{\hbox\{\textsuperscript\{\@thefnmark\}\}\}
To get, say, the marker to be typeset on the baseline in the normal font and enclosed in brackets -
\renewcommand*\{\@makefnmark\}\{ [\@thefnmark]\}
```

\footfootmark
\footmarkwidth \footmarkstyle{\langlearg\rangle}

```

The class macro for typesetting the marker at the foot of the page is \footfootmark. The mark is set in a box of width \footmarkwidth. If this is negative, the mark is outdented into the margin, if zero the mark is flush left, and when positive the mark is indented. The appearance of the mark is contolled by \footmarkstyle. The default specification is
\footmarkstyle\{\textsuperscript\{\#1\}\}
where the \#1 indicates the position of \@thefnmark in the style. The default results in the mark being set as a superscript. For example, to have the marker set on the baseline and followed by a right parenthesis, do
\footmarkstyle\{\#1) \}
```

\footmarksep \footparindent

```

The mark is typeset in a box of width \footmarkwidth and this is then followed by the text of the footnote. Second and later lines of the text are offset by the length \footmarksep from the end of the box. The first line of a paragraph within a footnote is indented by \footparindent.

\section*{\foottextfont}

The text in the footnote is typeset using the \foottextfont font. The default is \(\backslash\) footnotesize. Altogether, the class specifies
\footmarkstyle\{\textsuperscript\{\#1\}\}
\setlength\{\footmarkwidth\}\{1.8em\}
\setlength\{\footmarksep\}\{-1.8em\}
\setlength\{\footparindent\}\{1em\}
\newcommand\{\foottextfont\}\{\footnotesize\}
to replicate the standard footnote layout.
You might like to try the following combinations of \footmarkwidth and \(\backslash\) footmarksep to see if you prefer the layout produced by one of them to the standard layout (which is produced by the first pairing in the list below):
```

\setlength{\footmarkwidth}{1.8em} \setlength{\footmarksep}{-1.8em}
\setlength{\footmarkwidth}{1.8em} \setlength{\footmarksep}{0em}
\setlength{\footmarkwidth}{0em} \setlength{\footmarksep}{0em}
\setlength{\footmarkwidth}{-1.8em} \setlength{\footmarksep}{1.8em}
\setlength{\footmarkwidth}{0em} \setlength{\footmarksep}{1.8em} \footmarkstyle{\#1)\hfill}

```
\makefootmarkhook

Just before a footnote is typeset the macro \makefootmarkhook is called, which by default does nothing, but you can renew it to do something. For example:
\renewcommand\{\makefootmarkhook\}\{\raggedright\}
will cause footnotes to be typeset raggedright.
Any footnotes after this point will be set according to:
\setlength\{\footmarkwidth\}\{-1.0em\}
\setlength\{\footmarksep\}\{-\footmarkwidth\}
\footmarkstyle\{\#1\}

\section*{\multfootsep}

In the standard classes if two or more footnotes are applied sequentially \({ }^{1,2}\) then the markers in the text are just run together. The class, like the footmisc [Fai00 and ledmac Wil03] packages, inserts a separator between the marks. In the class the macro \multfootsep is used as the separator. Its default definition is:
\newcommand*\{\multfootsep\}\{\textsuperscript\{\normalfont,\}\}
```

\feetabovefloat
\feetbelowfloat

```

In the standard classes, footnotes on a page that has a float at the bottom are typeset before the float. I think that this looks peculiar. Following the \(\backslash\) feetbelowfloat declaration footnotes will be typeset at the bottom of the page below any bottom floats; they will also be typeset at the bottom of \raggedbottom pages as opposed to being put just after the bottom line of text. The standard positioning is used following the \(\backslash\) feetabovefloat declaration, which is the default.

\footnotetext{
One footnote
Immediately followed by another
}
```

\plainfootnotes
\twocolumnfootnotes
\threecolumnfootnotes
\paragraphfootnotes

```

Normally，each footnote starts a new paragraph．The class provides three other styles，mak－ ing four in all．Following the \twocolumnfootnotes declaration footnotes will be typeset in two columns，and similarly they are typeset in three columns after the \threecolumnfootnotes declaration．Footnotes are run together as a single paragraph after the \paragraphfootnotes declaration．The default style is used after the \plainfootnotes declaration．

The style can be changed at any time but there may be odd effects if the change is made in the middle of a page when there are footnotes before and after the declaration．You may find it interesting to try changing styles in an article type document that uses \maketitle and \thanks，and some footnotes on the page with the title：
```

\title\{...\thanks\{...\}\}

lauthor\{...\thanks\{...\}...\}
\begin\{document\} }
\paragraphfootnotes
\maketitle
\plainfootnotes
...
\newfootnoteseries\{〈series $\rangle\}$
\plainfootstyle\{〈series $\rangle\}$
\twocolumnfootstyle\{〈series $\rangle\}$
\threecolumnfootstyle\{〈series $\}\}$
\paragraphfootstyle\{〈series $\rangle\}$

```

The class provides for additional series of footnotes；perhaps the normal footnotes are required，flagged with arabic numerals，and another kind of footnote flagged with roman numerals．A new footnote series is created by the \newfootseries macro，where \(\langle\) series \(\rangle\) is an alphabetic identifier for the series．This is most conveniently a single（upper case） letter，for example P．

Calling，say，\newfootnoteseries\｛Q\} creates a set of macros equivalent to those for the normal \footnote but with the \(\langle\) series \(\rangle\) appended．These include \(\backslash\) footnoteQ，\footnotemarkQ， \(\backslash\) footnotetextQ and so on．These are used just like the normal \(\backslash\) footnote and companions．

By default，a series is set to typeset using the normal style of a paragraph per note．The series＇style can be changed by using one of the \．．footstyle commands．

For example，to have a＇ P ＇（for paragraph）series using roman numerals as markers which，in the main text are superscript with a closing parenthesis and at the foot are on the baseline followed by an endash，and the text is set in italics at the normal footnote size：
```

\newfootnoteseries{P}
\paragraphfootstyle{P}

\footmarkstyleP{\#1--}


```
\renewcommand\{\foottextfont\}\{\itshape\footnotesize\}
This can then be used like:
.... this sentence\footnoteP\{A 'p' footnote\label\{fnp\}\}
includes footnote \({ }^{\sim}\) footrefP\{fnp\}.
In a minipage a different counter (mpfootn...) is used for a footnote than in the main text (footn...). By default its value is a letter. To change it to, say, a numeral for the ' P ' series, do:
\renewcommand\{\thempfootnoteP\}\{\arabic\{mpfootnoteP\}\}
The \newfootnoteseries macro does not create series versions of the footnote-related length commands, such as \footmarkwidth and \footmarksep, nor does it create versions of \footnoterule.

At the foot of the page footnotes are grouped according to their series; all ordinary footnotes are typeset, then all the first series footnotes (if any), then the second series, and so on. The ordering corresponds to the order of \newfootnoteseries commands.
```

\footfudgefiddle

```

For paragraphed footnotes TeX has to estimate the amount of space they will take. Unfortunately this is an estimate and if it is an underestimate then the footnotes will flow too low on the page, for example below the page number. Increasing \footfudgefiddle from its default vaue of 64 , causes TeX to allot more space. For instance
\(\backslash\) renewcommand\{ \(\backslash\) footfufgefiddle \(\}\) \{70\}
will at least go some way to curing the problem. You will probably have to do some experimentation to get a good value.
```

\fnsymbol{\langlecounter\rangle}
\@fnsymbol{\langlenum\rangle}

```

The \fnsymbol macro typesets the representation of the counter <counter〉 like a footnote symbol. Internally it uses the kernel \@fnsymbol macro which converts a positive integer \(\langle n u m\rangle\) to a symbol. If you are not fond of the standard ordering of the footnote symbols, this is the macro to change. Its original definition is:
```

\def\@fnsymbol\#1{\ensuremath{\ifcase\#1\or *\or \dagger\or \ddagger\or
\mathsection\or \mathparagraph\or <br>\or **\or \dagger\dagger
\or \ddagger\ddagger \else\@ctrerr\fi}}

```

This, as shown by \@fnsymbol\{1\}, .. \@fnsymbol\{9\} produces the series: \(*, \dagger, \ddagger, \S, \llbracket, \|\), **, \(\dagger \dagger\), and \(\ddagger \ddagger\).

Robert Bringhurst quotes the following as the traditional ordering (at least up to \(\mathbb{\Omega}\)): *, \(\dagger, \ddagger, \S, \|, \mathbb{\Pi}, * *, \dagger \dagger\), and \(\ddagger \ddagger\). You can obtain this sequence by redefining \@fnsymbol as:
\renewcommand\{\@fnsymbol\}[1]\{\ensuremath\{\%
\ifcase\#1\or *\or \dagger\or \ddagger\or
\(\backslash\) mathsection\or \|\or \mathparagraph\or **\or \dagger\dagger
\or \ddagger\ddagger \else\@ctrerr\fi\}\}
not forgetting judicious use of \makeatletter and \makeatother if you do this in the preamble. Other authorities or publishers may prefer other sequences and symbols.

\subsection*{13.2 Verbatim footnotes}

The macro \verbfootnote can typeset a footnote that includes some verbatim text.
\verbfootnote[\(\langle\) num \(\rangle]\{\langle\) text \(\rangle\}\)

The next two paragraph are typeset by this code:
Below, footnote \(\backslash\) footref \(\{f n 1\}\) is a \(\backslash c m d\{\backslash\) footnote \(\}\) while
footnote \(\sim\) ref \(\{\mathrm{fn} 2\}\) is a \(\backslash c m d\{\backslash\) verbfootnote\}.

The \cmd\{\verbfootnote\} command should
```

appear\footnote{There may be some problems if color is

```
 used. \label\{fn1\}\}
to give identical results as the normal \(\backslash c m d\{\backslash f o o t n o t e\}\),
but it can include some verbatim
text\verbfootnote\{The \verb? \footnote? macro, like all others
 except for \verb? \verbfootnote?, can not
 contain verbatim text in its argument. \(\backslash\) label\{fn2\}\}
in the \meta\{text\} argument.
Below, footnote \({ }^{3}\) is a \footnote while footnote 4 is a \verbfootnote.
The \verbfootnote command should appear \({ }^{3}\) to give identical results as the normal \(\backslash\) footnote, but it can include some verbatim text \({ }^{4}\) in the \(\langle\) text \(\rangle\) argument.

\subsection*{13.3 Sidebars}

It appears that the \sidebar command, which was originally noted as being experimental, has been used successfully for a variety of tasks.
```

\sidebar{\langletext\rangle}
\sidebarfont

```

The \sidebar command is like the \marginpar command in that it typesets its \(\langle\) text \(\rangle\) argument, using the font specified by \sidebarfont, in the margin. Unlike \marginpar, the \(\langle\) text \(\rangle\) will start near the top of the page and may continue onto later pages if it is too long to go on a single page.

The default definition of \sidebarfont is
\newcommand\{\sidebarfont\}\{\normalfont\}
```

\sidebarform

```

Sidebars are normally narrow so text is set ragged right. More accurately, the text is set according to \sidebarform which is defined as:

3 There may be some problems if color is used.
4 The \footnote macro, like all others except for \verbfootnote, can not contain verbatim text in its argument.
\newcommand\｛\sidebarform\}\{\rightskip=\z@ \@plus 2em\}
which is ragged right but with less raggedness than \raggedright would allow．As usual， you can change \sidebarform，for example：
\renewcommand\｛\sidebarform\}\{\} \% justified text
You are likely to run into problems if the \sidebar command comes near a pagebreak， or if the sidebar text gets typeset alongside main text that has non－uniform line spacing （e．g．，around a \section）．Also，the contents of sidebars may not be typeset if they are too near to the end of the document．
```

\sidebarwidth
\sidebarhsep
\sidebarvsep

```

The \(\langle t e x t\rangle\) of a \sidebar is typeset in a column of width \sidebarwidth and there will be a horizontal gap of length \sidebarhsep between the typeblock and the \(\langle t e x t\rangle\) ．The length \sidebarvsep is the vertical gap between sidebars that fall on the same page．
\setsidebarheight\｛〈length \(\rangle\}\)
The macro \setsidebarheight can be used to specify the height of a sidebar．The 〈length \(\rangle\) argument should be equivalent to an integral number of lines．For example：
\setsidebarheight\｛15\onelineskip\}
Currently the alignment of the text in a sidebar with the main text is not particularly good and you may want to do some experimentation（possibly through a combination of sidebarvsep and \setsidebarheight）to make it better．\({ }^{5}\)

\section*{13．4 Side notes}

The vertical position of side notes specified via \marginpar is flexible so that adjacent notes are prevented from overlapping．
```

\sidepar[<left\rangle]{\langleright\rangle}
\sideparvshift

```

The \sidepar macro is similar to \marginpar except that it produces side notes that do not float－they may overlap．The same spacing is used for both \marginpar and \sidepar， namely the lengths \marginparsep and \marginparwidth．The length \sideparvshift can be used to make vertical adjustments to the position of \sidepar notes．By default this is set to a value of -2.08 ex which seems to be the magical length that aligns the top of the note with the text line．

By default the \(\langle\) right \(\rangle\) argument is put in the right margin．When the twoside option is used the \(\langle\) right \(\rangle\) argument is put into the left margin on the verso（even numbered）pages； however，for these pages the optional 〈left〉 argument is used instead if it is present．For two column text the relevent argument is put into the＇outer＇margin with respect to the column．

5 If you do improve the alignment，please let me know how you did it．
```

\sideparswitchtrue \sideparswitchfalse
\reversesidepartrue \reversesideparfalse
\parnopar

```

The default placement can be changed by judicious use of the \reversidepar* and \sideparswitch* declarations. For two sided documents the default is \sideparswitchtrue, which specifies that notes should be put into the outer margins; in one sided documents the default is \sideparswitchfalse which specifies that notes should always be put into the right hand margin. Following the declaration \reversesidepartrue notes are put into opposite margin than that described above (the default declaration is \reversesideparfalse).

When LaTeX is deciding where to place the side notes it checks whether it is on an odd or even page and sometimes TeX doesn't realise that it has just moved onto the next page. Effectively TeX typesets paragraph by paragraph (including any side notes) and at the end of each paragraph sees if there should have been a page break in the middle of the paragraph. If there was it outputs the first part of the paragraph, inserts the page break, and retains the second part of the paragraph, without retypesetting it, for eventual output at the top of the new page. This means that side notes for any given paragraph are in the same margin, either left or right. A side note at the end of a paragraph may then end up in the wrong margin. The macro \parnopar forces a new paragraph but without appearing to (the first line in the following paragraph follows immediately after the last element in the prior paragraph with no line break). You can use \parnopar to make TeX to do its page break calculation when you want it to, by splitting what appears to be one paragraph into two paragraphs.

Bastiaan Veelo has kindly provided example code for another form of a side note, as follows.
```

$\% \%$ A new command that allows you to note down ideas or annotations in
$\% \%$ the margin of the draft. If you are printing on a stock that is wider
$\% \%$ than the final page width, we will go to some length to utilise the
$\% \%$ paper that would otherwise be trimmed away, assuming you will not be
$\% \%$ trimming the draft. These notes will not be printed when we are not
$\%$ in draft mode.
\makeatletter
\ifdraftdoc
\newlength\{\draftnotewidth\}
\newlength\{\draftnotesignwidth\}
\newcommand\{\draftnote\} [1] \{\@bsphack\%
\{\%\% do not interfere with settings for other marginal notes
\strictpagechecktrue\%
\checkoddpage\%
\setlength\{\draftnotewidth\}\{\foremargin\}\%
\addtolength\{\draftnotewidth\}\{\trimedge\}\%
\addtolength\{\draftnotewidth\}\{-3\marginparsep\}\%
\ifoddpage
\setlength\{\marginparwidth\}\{\draftnotewidth\}\%
\marginpar\{\flushleft\textbf\{\textit\{\HUGE ! \ \}\}\small \#1\}\%
\else
\settowidth\{\draftnotesignwidth\}\{\textbf\{\textit\{\HUGE\ ! \}\}\}\%

```
```

            \addtolength{\draftnotewidth}{-\draftnotesignwidth}%
                    \marginpar{\raggedleft\makebox[Opt][r]{%% hack around
                        \parbox[t]{\draftnotewidth}{%%%%%%%%%% funny behaviour
                        \raggedleft\small\hspace{0pt}#1%
                            }}\textbf{\textit{\HUGE\ !}}%
                    }%
                    \i
                }\@esphack}
        \else
            \newcommand{\draftnote}[1]{\@bsphack\@esphack}
        \fi
    ```
 \makeatother

Bastiaan also noted that it provided an example of using the \foremargin length. If you want to try it out, either put the code in your preamble, or put it into a package (i.e., .sty file) without the \makeat... commands.

Chapter 14

\title{
Signposts and decoration
}

> \begin{tabular}{l} My soul, seek not the life of \\ immortals; but enjoy to the full \\ the resources that are within \\ your reach \\ \hline Pythian Odes \\ Pindar \end{tabular}

This chapter is typeset using the companion chapterstyle and the companion pagestyle.

\subsection*{14.1 Introduction}

By now we have covered most aspects of typesetting. As far as the class is concerned this chapter describes the remaining major element, namely headers and footers, and the slightly more fun task of typesetting epigraphs.

\subsection*{14.2 Page styles}

The class provides a selection of pagestyles that you can use and if they don't suit, then there are means to define your own.

These facilities were inspired by the fancyhdr package Oos96, although the command set is different.

The standard classes provide for a footer and header for odd and even pages. Thus there are four elements to be specified for a pagestyle. This class partitions the headers and footers into left, center and right portions, so there are a total of 12 elements that have to be specified for a pagestyle. You may find, though, that one of the built in pagestyles meets your needs so you don't have to worry about all these specifications.
```

\pagestyle{\langlestyle\rangle}
\thispagestyle{\langlestyle\rangle}

```
\(\backslash\) pagestyle sets the current pagestyle to \(\langle s t y l e\rangle\). On a particular page \thispagestyle can be used to override the cuurent pagestyle for the one page.

Some of the class' commands automatically call \thispagestyle:
- \part calls \thispagestyle\{part\};
- \chapter calls \thispagestyle\{chapter\};
- if \cleardoublepage will result in an empty verso page it calls \thispagestyle\{cleared\} for the empty page.
The page styles provided by the class are:
empty The headers and footers are empty.
plain The header is empty and the folio (page number) is centered at the bottom of the page.
headings The footer is empty and the header contains the the folio at the outer side of the page, and either the chapter or section title. Chapter 5 uses this style.
myheadings This is like the headings style except you have to specify the titles, if any, to go into the header.
ruled The footer contains the folio at the outside. The header contains either the chapter or section titles, and a line is drawn underneath the header. This style is used in Chapter 6 .
Ruled This is like the ruled style except that the headers and footers extend into the foredge margin. Chapter 15 uses this style.
companion This is like the pagestyle in the Companion series (e.g., see GMS94). For an example, see Chapter 14.
part This is the same as the plain pagestyle.
chapter This is the same as the plain pagestyle.
cleared This is the same as the empty pagestyle.
title This is the same as the plain pagestyle.
titlingpage This is the same as the empty pagestyle.
For the headings pagestyle above, you have to define your own titles to go into the header. Each sectioning command, say \sec, calls a macro called \secmark. The pagestyles usually define this command so that it picks up the title, and perhaps the number, of the \sec.
```

\markboth{\langleleft\rangle}{\langleright\rangle}
\markright{\langleright\rangle}

```
\(\backslash\) markboth sets the values of two markers to \(\langle l e f t\rangle\) and \(\langle\) right \(\rangle\) respectively, at the point in the text where it is called. Similarly, \markright sets the value of a marker to \(\langle r i g h t\rangle\).

\section*{\leftmark \rightmark}

The macro \leftmark contains the value of the 〈left〉 argument of the last \markboth on the page. The macro \rightmark contains the value of the \(\langle\) right \(\rangle\) argument of the first \markboth or \markright on the page, or if there is not one it contains the value of the most recent \(\langle\) right \(\rangle\) argument.

So, a pagestyle can define the \secmark commands in terms of \markboth or \(\backslash\) markright, and then use \leftmark and/or \rightmark in the headers or footers. I'll show examples of how this works later, and this is often how the myheadings style gets implemented.

\section*{14．3 Making headers and footers}

As mentioned，the class provides for left，center，and right slots in even and odd headers and footers．This section describes how you can make your own pagestyle using these 12 slots．
```

\makepagestyle{\langlestyle\rangle}
\aliaspagestyle{\langlealias\rangle}{\langleoriginal }\rangle
\copypagestyle{\langlenew\rangle}{\langleoriginal\rangle}

```

The command \makepagestyle specifies a pagestyle \(\langle s t y l e\rangle\) which is initially equivalent to the empty pagestyle．The \aliaspagestyle macro defines the 〈alias〉 pagestyle to be the same as the＜original〉 pagestyle．As an example of the latter，the class includes the code
\aliaspagestyle\｛part\}\{plain\}
\aliaspagestyle\｛chapter\}\{plain\}
\aliaspagestyle\｛cleared\}\{empty\}
The macro \copypagestyle creates a \(\langle n e w\rangle\) pagestyle with the definitions being copies of those for the \(\langle\) original \(\rangle\) pagestyle．
```

\makeevenhead{\langle<style\rangle}{\langleleft\rangle}{\langle< center }\rangle}{\langle\mathrm{ right }\rangle
\makeoddhead{\langlestyle\rangle}{\langleleft\rangle}{\langlecenter }\rangle}{\langle\mathrm{ right }\rangle
\makeevenfoot{\langlestyle\rangle}{\langleleft\rangle}{\langle<center \rangle}{\langle right\rangle}
\makeoddfoot{\langlestyle\rangle}{\langleleft\rangle}{\langlecenter }\rangle}{\langle\mathrm{ right }\rangle

```

The macro \makeevenhead defines the \(\langle\) left \(\rangle\) ，\(\langle\) center \(\rangle\) ，and \(\langle\) right \(\rangle\) portions of the \(\langle\) style \(\rangle\) pagestyle header for even numbered（verso）pages．Similarly \makeoddhead，\makeevenfoot， and \makeoddfoot define the \(\langle l e f t\rangle,\langle\) center \(\rangle\) and \(\langle\) right \(\rangle\) portions of the \(\langle\) style \(\rangle\) header for odd numbered（recto）pages，and the footers for verso and recto pages．These commmands for \(\langle\) style \(\rangle\) should be used after the corresponding \(\backslash\) makepagestyle for \(\langle\) style \(\rangle\) ．
```

\makerunningwidth{\langlestyle\rangle}{\langlelength\rangle}
\headwidth

```

The macro \makerunningwidth sets the width of the \(\langle\) style \(\rangle\) pagestyle headers and footers to be 〈length \(\rangle\) ．The \makepagestyle sets the width to be the textwidth，so the macro need only be used if some other width is desired．The length \headwidth is provided as a （scratch）length that may be used for headers or footers，or any other purpose．
```

\makeheadrule{\langlestyle\rangle}{\langlewidth\rangle}{\langle\thickness\rangle}
\makefootrule{\langlestyle\rangle}{\langlewidth\rangle}{\langlethickness\rangle}{\langleskip\rangle}

```

A header may have a rule drawn between it and the top of the typeblock，and similarly a rule may be drawn between the bottom of the typeblock and the footer．The \makeheadrule macro specifies the the \(\langle\) width \(\rangle\) and \(\langle\) thickness \(\rangle\) of the rule below the \(\langle\) style \(\rangle\) pagestyle header，and the \makefootrule does the same for the rule above the footer；the additional \(\langle s k i p\rangle\) argument is a distance that specifies the vertical positioning of the foot rule（see
\footruleskip). The \makepagestyle macro initialises the \(\langle\) width \(\rangle\) to the \textwidth and the \(\langle\) thickness \(\rangle\) to 0 pt , so by default no rules are visible.

\section*{\normalrulethickness}
\normalrulethickness is the normal thickness of a visible rule, by default 0.4 pt . It can be changed using \setlength, although I suggest that you do not unless perhaps when using the 14 pt or 17 pt class options.
```

\footruleheight
\footruleskip

```

The macro \footruleheight is the height of a normal rule above a footer (default zero). \(\backslash\) footruleskip is a distance sufficient to ensure that a foot rule will be placed between the bottom of the typeblock and the footer. Despite appearing to be lengths, if you really need to change the values use \renewcommand, not \setlength.
\[
\begin{array}{|l|}
\hline \backslash \text { makeheadposition }\{\langle\text { style }\rangle\} \\
\{\langle\text { eheadpos }\rangle\}\{\langle\text { oheadpos }\rangle\}\{\langle\text { efootpos }\rangle\}\{\langle\text { ofootpos }\rangle\}
\end{array}
\]

The \makeheadposition macro specifies the horizontal positioning of the even and odd headers and footers, respectively, for the \(\langle\) style \(\rangle\) pagestyle. Each of the \(\langle\ldots p o s\rangle\) arguments may be flushleft, center, or flushright, with the obvious meanings. An empty, or unrecognised, argument is equivalent to center. This macro is really only of use if the header/footer width is not the same as the \textwidth.
\[
\text { \makepsmarks }\{\langle\text { style }\rangle\}\{\langle\text { code }\rangle\}
\]

The last thing that the \pagestyle\{〈style〉\} does is call the \(\langle\) code \(\rangle\) argument of the \(\backslash\) makepsmarks for \(\langle\) style \(\rangle\). This is normally used for specifying non-default code (i.e., code not specifiable via any of the previous macros) for the particular pagestyle. The code normally defines the marks, if any, that will be used in the headers and footers.

\section*{Example pagestyles}

This first example demonstrates most of the page styling commands. In the LaTeX Companion series of books GMS94, GRM97, GR99 the header is wider than the typeblock, sticking out into the foredge margin, and has a rule underneath it. The page number is in bold and at the outer end of the header. Chapter titles are in verso headers and section titles in recto headers, both in bold font and at the spine margin. The footers are empty.

The first thing to do in implementing this style is to calculate the width of the headers, which extend to cover any marginal notes.
```

\setlength\{\headwidth\}\{\textwidth\}
\addtolength\{\headwidth\}\{\marginparsep\}
\addtolength\{\headwidth\}\{\marginparwidth\}

```

Now we can set up an empty companion pagestyle and start to change it by specifying the new header and footer width:
\(\backslash\) makepagestyle\{companion\}
\makerunningwidth\{companion\}\{\headwidth\}
and specify the width and thickness for the header rule, otherwise it will be invisible.
\(\backslash\) makeheadrule\{companion\}\{\headwidth\}\{\normalrulethickness\}
In order to get the header to stick out into the foredge margin, verso headers have to be flushright (raggedleft) and recto headers to be flushleft (raggedright). As the footers are empty, their position is immaterial.
\makeheadposition\{companion\}\{flushright\}\{flushleft\}\{\}\{\}
The current chapter and section titles are obtained from the \leftmark and \rightmark macros which are defined via the \chaptermark and \sectionmark macros. Remember that \leftmark is the last \(\langle l e f t\rangle\) marker and \rightmark is the first \(\langle r i g h t\rangle\) marker on the page.

Chapter numbers are not put into the header but the section number, if there is one, is put into the header. We have to make sure that the correct definitions are used for these, and this is where the \makepsmarks macro comes into play.
```

\makepsmarks{companion}{%
\let\@mkboth\markboth
\def\chaptermark\#\#1{\markboth{\#\#1}{\#\#1}}% % left \& right marks
\def\sectionmark\#\#1{\markright{% % right mark
\ifnum \c@secnumdepth>\z@
\thesection. \% % section number
\f
\#\#1}}
}

```

The preliminaries have all been completed, and it just remains to specify what goes into each header and footer slot (but the footers are empty).
```

\makeevenhead{companion}%
{\normalfont\bfseries\thepage}{}{\normalfont\bfseries\leftmark}
\makeoddhead{companion}%
{\normalfont\bfseries\rightmark}{}{\normalfont\bfseries\thepage}

```

Now issuing the command \pagestyle\{companion\} will produce pages typeset with companion pagestyle headers.

This definition is actually part of the class. If you want to alter it, or use it as the basis for a style of your own, remember the caveats about macros with @ in their names.

\section*{Special headers}

If you look at the Index you will see that the header shows the first and last entries on the page. A main entry in the index looks like:
\item \idxmark\{entry\}, page number(s)
and in the preamble to this manual \idxmark is defined as
\newcommand\{\idxmark\}[1]\{\#1\markboth\{\#1\}\{\#1\}\}
This typesets the entry and also uses the entry as markers so that the first entry on a page is held in \rightmark and the last is in \leftmark.

As index entries are usually very short, the Index is set in two columns. Unfortunately LaTeX's marking mechanism can be a little fragile on twocolumn pages, but the standard fixltx2e package MC00 corrects this.

The index itself is called by
\clearpage
\pagestyle\{index\}
\renewcommand\{\preindexhook\}\{\%
The first page number is usually, but not always, the primary reference to
the indexed topic.\vskip\onelineskip\}
\printindex
The index pagestyle, which is the crux of this example, is defined here as:
\makepagestyle\{index\}
\makeheadrule\{index\}\{\textwidth\}\{\normalrulethickness\}
\(\backslash\) makeevenhead\{index\}\{\rightmark\}\{\}\{\leftmark\}
\(\backslash\) makeoddhead\{index\}\{\rightmark\}\{\}\{\leftmark\}
\(\backslash\) makeevenfoot \(\{\) index \(\}\{\backslash\) thepage \(\}\}\}\)
\(\backslash\) makeoddfoot \(\{\) index \(\}\}\}\{\backslash\) thepage \(\}\)
This, as you can hopefully see, puts the first and last index entries on the page into the header at the left and right, with the folios in the footers at the foredge margin.

I used Pehong Chen's MakeIndex program CH88 for converting the raw index data in the .idx file into the form expected by LaTeX in the .ind file. MakeIndex can be configured via an .ist file, and the memman.ist file that I created for this manual includes the mysterious lines
\% output main entry <entry> as: \item \idxmark\{<entry>\},
item_0 "\n\\item \\idxmark\{"
delim_0 "\},"
Look up either Chen's paper CH88 or Chapter 12 in GMS94 for an explanation of this cryptic code.
```

\ifonlyfloats{\langleyes\rangle}{\langleno\rangle}

```

There are occasions when it is desireable to have different headers on pages that only contain figures or tables. If the command \ifonlyfloats is issued on a page that contains no text and only floats then the \(\langle y e s\rangle\) argument is processed, otherwise on a normal page the \(\langle n o\rangle\) argument is processed. The command is most useful when defining a pagestyle that should be different on a float-only page.

For example, assume that the companion pagestyle is to be generally used, but on floatonly pages all that is required is a pagestyle similar to plain. Borrowing some code from the companion specification this can be accomplished like:
```

\makepagestyle{floatcomp}
% \headwidth has already been defined for the companion style
\makeheadrule{floatcomp}{\headwidth}%
{\ifonlyfloats{0pt}{\normalrulethickness}}
\makeheadposition{floatcomp}{flushright}{flushleft}{}{}
\makepsmarks{floatcomp}{\companionpshook}
\makeevenhead{floatcomp}{\ifonlyfloats{}{\normalfont\bfseries\thepage}}%
{}{\ifonlyfloats{}{\normalfont\bfseries\leftmark}}

```
```

\makeoddhead{floatcomp}{\ifonlyfloats{}{\normalfont\bfseries\rightmark}}%
{}{\ifonlyfloats{}{\normalfont\bfseries\thepage}}
\makeevenfoot{floatcomp}{}{\ifonlyfloats{\thepage}{}}{}
\makeoddfoot{floatcomp}{}{\ifonlyfloats{\thepage}{}}{}

```

The code above for the floatcomp style should be compared with that for the earlier companion style.

The headrule is invisible on float pages by giving it zero thickness, otherwise it has the \normalrulethickness. The head position is identical for both pagestyles. However, the headers are empty for floatcomp and the footers have centered page numbers on float pages; on ordinary pages the footers are empty while the headers are the same as the companion headers.

The code includes one 'trick'. The macro \makepsmarks\{X\}\{code\} is equivalent to \newcommand\{\Xpshook\}\{code\}
I have used this knowledge in the line:
\makepsmarks\{floatcomp\}\{\companionpshook\}
which avoids having to retype the code from \makepsmarks\{companion\}\{...\}, and ensures that the code is actually the same for the two pagestyles.
```

\mergepagefloatstyle{\langlestyle\rangle}{\langletextstyle\rangle}{\langle{loatstyle\rangle}

```

If you have two pre-existing pagestyles, one that will be used for text pages and the other that can be used for float pages, then the \mergepagefloatstyle command provides a simpler means of combining them than the above example code for floatcomp. The argument \(\langle s t y l e\rangle\) is the name of the pagestyle being defined. The argument \(\langle\) textstyle \(\rangle\) is the name of the pagestyle for text pages and 〈floatstyle〉 is the name of the pagestyle for float-only pages. Both of these must have been defined before calling \mergepagefloatstyle. So, instead of the long winded, and possibly tricky, code I could have simply said:
\mergepagefloatstyle\{floatcomp\}\{companion\}\{plain\}

\subsection*{14.4 Epigraphs}

The whole is more than the sum of the parts.

Metaphysica Aristotle

Some authors like to add an interesting quotation at either the start or end of a chapter. The class provides commands to assist in the typesetting of a single epigraph. Other authors like to add many such quotations and the class provides environments to cater for these as well. Epigraphs can be typeset at either the left, the center or the right of the typeblock. A few example eipgraphs are exhibited here, and others can be found in an article by Christina Thiele Thi99 where she reviewed the epigraph package Wil00a which is included in the class.

\section*{The epigraph command}

The original inspiration for \epigraph was Doug Schenck's for the epigraphs in our book SW94. That was hard wired for the purpose at hand. The version here provides much more flexibility.
\[
\text { \epigraph\{〈text }\rangle\}\{\langle\text { source }\rangle\}
\]

The command \epigraph typesets an epigraph using \(\langle t e x t\rangle\) as the main text of the epigraph and \(\langle\) source \(\rangle\) being the original author (or book, article, etc.) of the quoted text. By default the epigraph is placed at the right hand side of the typeblock, and the \(\langle\) source \(\rangle\) is typeset at the bottom right of the \(\langle t e x t\rangle\).

\section*{The epigraphs environment}
```

$$
\begin{epigraphs}
\qitem{\langletext\rangle}{\langlesource\rangle}
...
\end{epigraphs}
$$

```

The epigraphs environment typesets a list of epigraphs, and by default places them at the right hand side of the typeblock. Each epigraph in an epigraphs environment is specified by a \qitem (analagous to the \item command in ordinary list environments). By default, the \(\langle\) source \(\rangle\) is typeset at the bottom right of the \(\langle\) text \(\rangle\).

\section*{General}

Example is the school of mankind, and they will learn at no other.

Letters on a Regicide Peace
Edmund Burke

The commands described in this section apply to both the \epigraph command and the epigraphs environment. But first of all, note that an epigraph immediately after a heading will cause the first paragraph of the following text to be indented. If you want the initial paragraph to have no indentation, then start it with the \(\backslash\) noindent command.
```

\epigraphwidth
\epigraphtextposition{\langleflush\rangle}

```

The epigraphs are typeset in a minipage of width \epigraphwidth. The default value for this can be changed using the \setlength command. Typically, epigraphs are typset in a measure much less than the width of the typeblock. In order to avoid bad line breaks, the \(\langle t e x t\rangle\) is normally typeset raggedright.

The \(\langle f l u s h\rangle\) argument to the \epigraphtextposition declaration controls the \(\langle\) text \(\rangle\) typesetting style．By default this is flushleft（which produces raggedright text）．The sen－ sible values are center for centered text，flushright for raggedleft text，and flushleftright for normal justified text．

If by any chance you want the \(\langle t e x t\rangle\) to be typeset in some other layout style，the easiest way to do this is by defining a new environment which sets the paragraphing parameters to your desired values．For example，as the \(\langle t e x t\rangle\) is typeset in a minipage，there is no paragraph indentation．If you want the paragraphs to be indented and justified then define a new environment like：
\newenvironment \｛myparastyle\}\{\setlength\{\parindent\}\{1em\}\}\{\} and use it as：
\epigraphtextposition\｛myparastyle\}
```

\epigraphposition{\langleflush\rangle}

```

As noted，the default position of epigraphs is at the right hand side of the typeblock．The positioning is controlled by the 〈flush〉 argument to the \epigraphposition declaration． The default value is flushright．This can be changed to flushleft for positioning at the left hand side or to center for positioning at the center of the typeblock．

\section*{\epigraphsourceposition\｛〈flush \(\rangle\) \}}

The \(\langle\) flush \(\rangle\) argument to the \epigraphsourceposition declaration controls the position of the \(\langle\) source \(\rangle\) ．The default value is flushright．It can be changed to flushleft，center or flushleftright．

For example，to have epigraphs centered with the \(\langle\) source \(\rangle\) at the left，add the following to your document．
```

\epigraphposition{center}
\epigraphsourceposition{flushleft}

```
\epigraphfontsize\{〈fontsize \(\rangle\) \}

Epigraphs are often typeset in a smaller font than the main text．The 〈fontsize〉 argument to the \epigraphfontsize declaration sets the font size to be used．If you don＇t like the default value（ \(\backslash\) small），you can easily change it to，say \(\backslash\) footnotesize by：
\epigraphfontsize\｛\footnotesize\}

\section*{\epigraphrule}

By default，a rule is drawn between the \(\langle\) text \(\rangle\) and \(\langle\) source \(\rangle\) ，with the rule thickness being given by the value of \epigraphrule．The value can be changed by using \setlength．A value of 0pt will eliminate the rule．Personally，I dislike the rule in the list environments．
```

\beforeepigraphskip
\afterepigraphskip

```

The two ．．．skip commands specify the amount of vertical space inserted before and after typeset epigraphs．Again，these can be changed by \setlength．It is desireable that the sum of their values should be an integer multiple of the \baselineskip．

Note that you can use normal LaTeX commands in the \(\langle\) text \(\rangle\) and \(\langle\) source \(\rangle\) arguments． You may wish to use different fonts for the \(\langle\) text \(\rangle\)（say roman）and the \(\langle\) source \(\rangle\)（say italic）．

The epigraph at the start of this section was specified as：
```

\epigraph{Example is the school of mankind,
and they will learn at no other.}
{*Letters on a Regicide Peace*<br>\textsc{Edmund Burke}}

```

\section*{Epigraphs before chapter headings}

The \epigraph command and the epigraphs environment typeset an epigraph at the point in the text where they are placed．The first thing that a \chapter command does is to start off a new page，so another mechanism is provided for placing an epigraph just before a chapter heading．

\section*{\epigraphhead［／distance \(\rangle]\{\langle\) text \(\rangle\}\)}

The \epigraphhead macro stores \(\langle\) text \(\rangle\) for printing at \(\langle\) distance \(\rangle\) below the header on a page．〈text〉 can be ordinary text or，more likely，can be either an \epigraph command or an epigraphs environment．By default，the epigraph will be typeset at the righthand margin．If the command is immediately preceded by a \chapter or \chapter＊command， the epigraph is typeset on the chapter title page．

The default value for the optional 〈distance〉 argument is set so that an \epigraph consisting of a single line of quotation and a single line denoting the source is aligned with the bottom of the＇Chapter X＇line produced by the \chapter command．In other cases you will have to experiment with the \(\langle\) distance \(\rangle\) value．The value for \(\langle\) distance \(\rangle\) can be either a integer or a real number．The units are in terms of the current value for \unitlength． A typical value for \(\langle\) distance \(\rangle\) for a single line quotation and source for a \chapter＊might be about 70 （points）．A positive value of \(\langle\) distance \(\rangle\) places the epigraph below the page heading and a negative value will raise it above the page heading．

Here＇s some example code：
\chapter＊\｛Celestial navigation\}
\epigraphhead［70］\｛\epigraph\｛Star crossed lovers．\}\{\textit\{The Bard\}\}\}
The \(\langle t e x t\rangle\) argument is put into a minipage of width \epigraphwidth．If you use something other than \epigraph or epigraphs for the \(\langle\) text \(\rangle\) argument，you may have to so some positioning of the text yourself so that it is properly located in the minipage．For example
\chapter\｛Short\}
\renewcommand\｛\epigraphflush\}\{center\}
\epigraphhead\｛\centerline\｛Short quote\}\}
The \epigraphhead command changes the page style for the page on which it is speci－ fied，so there should be no text between the \chapter and the \epigraphhead commands． The page style is identical to the plain page style except for the inclusion of the epigraph．If you want a more fancy style for epigraphed chapters you will have to do some work yourself．
```

\epigraphforheader[\langledistance\rangle]{\langletext\rangle}
\epigraphpicture

```

The \epigraphforheader macro takes the same arguments as \epigraphhead but puts \(\langle t e x t\rangle\) into a zero-sized picture at the coordinate position (\(0,-\)-<distance \(\rangle\)); the macro \epigraphpicture holds the resulting picture. This can then be used as part of a chapter pagestyle, as in
```

\makepagestyle{mychapterpagestyle}
...
\makeoddhead{mychapterpagestyle}{}{}{\epigraphpicture}
\dropchapter{\langlelength\rangle}
\undodrop

```

If a long epigraph is placed before a chapter title it is possible that the bottom of the epigraph may interfere with the chapter title. The command \dropchapter will lower any subsequent chapter titles by \(\langle\) length \(\rangle\); a negative \(\langle\) length \(\rangle\) will raise the titles. The command \undodrop restores subsequent chapter titles to their default positions. For example:
\dropchapter\{2in\}
\chapter\{Title\}
\epigraphhead\{long epigraph\}
\undodrop
```

\cleartoevenpage [\langletext\rangle]

```

On occasions it may be desirable to put something (e.g., an epigraph, a map, a picture) on the page facing the start of a chapter, where the something belongs to the chapter that is about to start rather than the chapter that has just ended. In order to do this in a document that is going to be printed doublesided, the chapter must start on an odd numbered page and the pre-chapter material put on the immediately preceding even numbered page. The \cleartoevenpage command is like \cleardoublepage except that the page following the command will be an even numbered page, and the command takes an optional argument which is applied to the skipped page (if any).

Here is an example:
```

... end previous chapter.
\cleartoevenpage

$$
\begin{picture}... \end{picture}
$$

\chapter{Next chapter}

```

If the style is such that chapter headings are put at the top of the pages, then it would be advisable to include \thispagestyle\{empty\} (or plain) immediately after \cleartoevenpage to avoid a heading related to the previous chapter from appearing on the page.

If the something is like a figure with a numbered caption and the numbering depends on the chapter numbering, then the numbers have to be hand set (unless you define a special chapter command for the purpose). For example:
```

... end previous chapter.
\cleartoevenpage[\thispagestyle{empty}] % skipped page, if any, to be empty
\thispagestyle{plain}
\addtocounter{chapter}{1} % increment the chapter number
\setcounter{figure}{0} % initialise figure counter


Figure 1: Pre chapter figure

\addtocounter{chapter}{-1} % decrement the chapter number
\chapter{Next chapter} % increments chapter \& initialises figure numbers
\addtocounter{figure}{1} % to account for pre-chapter figure

```

\section*{Epigraphs on part pages}

The epigraph package as it stands cannot put an epigraph on the same page as a \(\backslash\) part or \(\backslash\) part* title page in a book or report class. This is because the \part command internally does some page flipping before and after the title page. However, it is easy enough to put epigraphs on part pages.
- Create a file called, say, epipart.sty which looks like this:
\% epipart.sty
\let\@epipart\@endpart
\renewcommand\{\@endpart\}\{\thispagestyle\{epigraph\}\@epipart\}
\endinput
- Start your document like:
\documentclass[...]\{...\}
\usepackage\{epigraph\}
\usepackage\{epipart\}
- Immediately before each \part command put an \epigraphhead command. For example:
```

\epigraphhead[300]{Epigraph text}
\part{Part title}

```

The value of the optional argument may need changing to vertically adjust the position of the epigraph. If there is any \part that does not have an epigraph then an empty \epigraphhead command (i.e., \epigraphhead\{\}) must be placed immediately before the \part command.

A similar scheme may be used for epigraphs on other kinds of pages. The essential trick is to make sure that the epigraph pagestyle is used for the page. For an epigraphed bibliography or index, the macros \prebibhook or \preindexhook can be appropriately modified to do this.

\section*{Fifteen}

\section*{Typesetting verse}

This chapter uses the demo chapterstyle and the Ruled pagestyle.

\subsection*{15.1 Introduction}

The typesetting of a poem should be really be dependent on the particular poem. Individual problems do not usually admit of a general solution, so this manual and code should be used more as a guide towards some solutions rather than providing a ready made solution for any particular piece of verse.

The doggerel used as illustrative material has been taken from Wil??.
Note that for the examples in this section I have made no attempt to do other than use the minimal (La)TeX capabilities; in particular I have made no attempt to do any special page breaking so some stanzas may cross onto the next page - most undesireable for publication.

The standard LaTeX classes provide the verse environment which is defined as a particular kind of list. Within the environment you use \(\backslash \backslash\) to end a line, and a blank line will end a stanza. For example, here is a single stanza poem:
```

\newcommand{\garden}{
I used to love my garden <br>
But now my love is dead <br>
For I found a bachelor's button <br>
In black-eyed Susan's bed.
}

```

When this is typeset as a normal LaTeX paragraph (with no paragraph indentation) it looks like:

I used to love my garden
But now my love is dead
For I found a bachelor's button
In black-eyed Susan's bed.
Typesetting it within the verse environment produces:

I used to love my garden
But now my love is dead
For I found a bachelor's button
In black-eyed Susan's bed.
The stanza could also be typeset within the alltt environment, defined in the standard alltt package [Bra97], using a normal font and no \\ line endings.

\section*{\begin\{alltt\}\normalfont }}

I used to love my garden
But now my love is dead
For I found a bachelor's button
In black-eyed Susan's bed.
\end\{alltt\} }
which produces:

I used to love my garden
But now my love is dead
For I found a bachelor's button
In black-eyed Susan's bed.
The alltt environment is like the verbatim environment except that you can use LaTeX macros inside it. In the verse environment long lines will be wrapped and indented but in the alltt environment there is no indentation.

Some stanzas have certain lines indented, often alternate ones. To typeset stanzas like this you have to add your own spacing. For instance:
\(\backslash\) begin\{verse\}
There was an old party of Lyme \\
Who married three wives at one time. \\
\hspace\{2em\} When asked: 'Why the third?' \\
\hspace\{2em\} He replied: 'One's absurd, \\
And bigamy, sir, is a crime.'
\end\{verse\} }
is typeset as:
There was an old party of Lyme
Who married three wives at one time.
When asked: 'Why the third?'
He replied: 'One's absurd,
And bigamy, sir, is a crime.'
Using the alltt environment you can put in the spacing via ordinary spaces. That is, this:
```

$$
\begin{alltt}\normalfont
There was an old party of Lyme
Who married three wives at one time.
    When asked: 'Why the third?'
    He replied: 'One's absurd,
And bigamy, sir, is a crime.'
\end{alltt}
$$

```
is typeset as

There was an old party of Lyme
Who married three wives at one time.
When asked: 'Why the third?'
He replied: 'One's absurd,
And bigamy, sir, is a crime.'

More exotically you could use the \(\mathrm{TeX} \backslash\) parshape command \({ }^{1}\) :
\parshape = 5 Opt \linewidth Opt \linewidth
2em \linewidth 2em \linewidth Opt \linewidth
\noindent There was an old party of Lyme \\
Who married three wives at one time. \\
When asked: 'Why the third?' \\
He replied: 'One's absurd, \\
And bigamy, sir, is a crime.' \par
which will be typeset as:
There was an old party of Lyme
Who married three wives at one time.
When asked: 'Why the third?'
He replied: 'One's absurd,
And bigamy, sir, is a crime.'
This is about as much assistance as standard (La)TeX provides, except to note that in the verse environment the \(\backslash \backslash *\) version of \(\backslash \backslash\) will prevent a following page break. You can also make judicious use of the \needspace macro to keep things together.

Some books of poetry, and especially anthologies, have two or more indexes, one, say for the poem titles and another for the first lines. The index Jon95] and multind Lon91] packages provide support for multiple indexes in one document.

\subsection*{15.2 Classy verse}

The code provided by the memoir class is meant to help with some aspects of typesetting poetry but does not, and cannot, provide a comprehensive solution to all the requirements that will arise.

The main aspects of typesetting poetry that differ from typesetting plain text are:
- Poems are usually visually centered on the page.
- Some lines are indented, and often there is a pattern to the indentation.
- When a line is too wide for the page it is broken and the remaining portion indented with respect to the original start of the line.
These are the ones that the class attempts to deal with.
1 See the TeXbook for how to use this.
```

$$
\begin{verse}[\langlelength\rangle] ... \end{verse}
$$
\versewidth
\stanzaskip

```

The verse environment provided by the class is an extension of the usual LaTeX environment. The environment takes one optional parameter, which is a length; for example \begin\{verse\}[4em]. You may have noticed that the earlier verse examples are all near } the left margin, whereas verses usually look better if they are typeset about the center of the page. The length parameter, if given, should be about the length of an average line, and then the entire contents will be typeset with the mid point of the length centered horizontally on the page.

The length \versewidth is provided as a convenience. It may be used, for example, to calculate the length of a line of text for use as the optional argument to the verse environment:
\settowidth\{\versewidth\}\{This is the average line,\}
\begin\{verse\}[\versewidth] }
The vertical space between stanzas is the length \stanzaskip. It can be changed by the usual methods.

\section*{\(\backslash \backslash \backslash \backslash * \backslash>\backslash \backslash!\)}

Each line in the verse environment, except possibly for the last line in a stanza, must be ended with either \(\backslash \backslash\) or \(\backslash \backslash *\). The starred version prevents a page break before the following line. The \(\backslash \backslash>\) command causes a break in the line (see the description of the \verselinebreak macro).

The \(\backslash \backslash!\) macro may be used at the end of a line to signal the end of the stanza. This would normally be followed by a blank line before the next stanza.

Each of the \(\backslash \backslash \ldots\) macros take an optional length argument. In the case of the \(\backslash \backslash, \backslash \backslash *\) and \(\backslash \backslash!\) macros it introduces the specified amount of vertical space. For \(\backslash \backslash>\) it specifies a horizontal space.
```

\vin
\vgap
\vindent

```

The command \vin is shorthand for \hspace*\{\vgap\} for use at the start of an indented line of verse. The length \vgap (initially 1.5em) can be changed by \setlength or \addtolength.

Verse lines are sometimes indented according to the space taken by the text on the previous line.
```

\vinphantom{\langletext\rangle}

```

The macro \vinphantom can be used at the start of a line of verse to give an indentation as though the line started with \(\langle t e x t\rangle\). For example:

Come away with me.

\section*{Impossible!}

The above fragment from a poem was typeset by:
\(\backslash\) begin\{verse\}
\ldots \\
Come away with me.
\end\{verse\} }
\begin\{verse\} }
\vinphantom\{Come away with me.\} Impossible! \\
\ldots
\end\{verse\} }
\vinphantom may also be used in the middle of any line to leave some blank space. For example, compare the two lines below, which are produced by this code:
\noindent Come away with me and be my love --- Impossible. \\ Come away with me \vinphantom\{and be my love\} --- Impossible.
Come away with me and be my love - Impossible.
Come away with me - Impossible.
When a verse line is too long to fit within the typeblock it is wrapped onto the next line with a space, given by the value of the length \vindent. The initial value of \vindent is twice \vgap.
\[
\text { \verselinebreak[〈length }\rangle]
\]

Using the command \verselinebreak will cause later text in the line of the verse to be typeset indented on the following line. If the optional length argument is given then its value is added to the normal indentation. The broken line will count as a single line as far as the altverse, patverse, and patverse* environments are concerned. The \(\backslash \backslash>\) macro is shorthand for \verselinebreak.
```

$$
\begin{altverse} ... \end{altverse}
$$

```

Within the verse environment stanzas are separated by a blank line in the input. Individual stanzas within verse may, however, be enclosed in the altverse environment. This has the effect of indenting the 2nd, 4th, etc., lines of the stanza by the length \vgap.
```

$$
\begin{patverse} ... \end{patverse}
$$
$$
\begin{patverse*} ... \end{patverse*}
$$
\indentpattern{\langledigits\rangle}

```

As an alternative to the altverse environment, individual stanzas within the verse environment may be enclosed in the patverse environment. Within this environment the indentation of each line is specified by an indentation pattern, which consists of an array of digits, \(d_{1}\) to \(d_{n}\), and the \(n^{t h}\) line is indented by \(d_{n}\) times \(\backslash v g a p\). The first line is not indented, irrespective of the value of \(d_{1}\) and if the number of lines is greater than the pattern length, the trailing lines are not indented.

The patverse* environment is similar to patverse except that the indentation pattern will keep repeating until the end of the environment.

The indentation pattern for a patverse environment is specified via the \indentpattern command, where \(\langle\) digits \(\rangle\) is a string of digits (e.g., 3213245281).
```

\linenumberfrequency{\langlenth\rangle}
\thepoemline
\linenumberfont{\langlefont-decl\rangle}
\vrightskip

```

The lines in a poem may be numbered. The \linenumberfrequency declaration specifies that every \(\langle n t h\rangle\) line is to be numbered. If \(\langle n t h\rangle\) is less than 1 then line numbering is switched off, if \(\langle n t h\rangle\) is 1 then every line will be numbered, and if \(\langle n t h\rangle\) is, say 5 , every fifth line will be numbered. The default is \(\backslash\) linenumberfrequency \(\{0\}\).

The counter for the lines is poemline, so the typeset form of the line number is specified via \thepoemline which defaults to arabic numbers. The number is positioned in the right hand margin at a distance \vrightskip (default 1em) from the edge of the typeblock. The font used for the line numbers is specified by \linenumberfont. The default definition is: \linenumberfont\{\small\rmfamily\} to produce small numbers in the roman font.
```

\flagverse{\langletext\rangle}
\vleftskip

```

The \flagverse macro can be used at the start of a verse line, and it typesets its \(\langle\) text \(\rangle\) argument at a distance \vleftskip (default 3em) to the left of the verse line. This could be used, for example, to number stanzas.
```

\poemtitle[\langleshort\rangle]{\langlelong\rangle}
\poemtitle*{\langlelong\rangle}
\poemtitlefont{\langlefont\rangle}

```
\poemtitle typesets the title of a poem and makes an entry into the ToC. The starred version, \poemtitle*, makes no ToC entry. The \poemtitlefont macro specifies the font and positioning of the poem title. Its initial definition is:
\newcommand\{\poemtitlefont\}\{\normalfont \bfseries\large\centering\}
to give a large bold centered title. This can of course be renewed if you want something else.
```

\beforepoemtitleskip
\afterpoemtitleskip

```

These two lengths are the vertical space before and after the \poemtitle title text. They are initially defined to give the same spacing as for a \section title. They can be changed by \setlength or \addtolength for different spacings.

\section*{\poemtitlemark\{〈title \(\rangle\}\)}

The \poemtitle macro, but not \poemtitle*, calls the \poemtitlemark\{〈title \(\rangle\}\) macro, which is defined to do nothing. This would probably be changed by a pagestyle definition (like \sectionmark or \chaptermark may be modified).
\[
\backslash \text { poemtoc }\{\langle s e c\rangle\}
\]

The kind of entry made in the ToC by the \poemtitle command is defined by \(\backslash\) poemtoc. The initial definition is:
\newcommand\{\poemtoc\}\{section\}
for a section-like ToC entry. This can be changed to, say, chapter or subsection or

\section*{Examples}

Here are some sample verses using the class facilities.
First our old Limerick friend, but titled and centered:
\(\backslash\) renewcommand\{\poemtoc\}\{subsection\}
\settocdepth\{subsection\}
\poemtitle\{A Limerick\}
\settowidth\{\versewidth\}\{There was an old party of Lyme\}
\begin\{verse\}[\versewidth] }
There was an old party of Lyme \\
Who married three wives at one time. \\
\vin When asked: 'Why the third?' \\
\vin He replied: 'One's absurd, \\
And bigamy, sir, is a crime.'
\end\{verse\} }
which gets typeset as below. The \(\backslash\) poemtoc is redefined to subsection so that the \(\backslash\) poemtitle titles are entered into the ToC as unnumbered subsections. However, the ToC normally only lists sections and above, so I also used \settocdepth to change this to subsections and above \({ }^{2}\).

\section*{A Limerick}

There was an old party of Lyme Who married three wives at one time.

When asked: 'Why the third?'
He replied: 'One's absurd,
And bigamy, sir, is a crime.'
Next is the Garden verse within the altverse environment. It is titled and centered.
\settowidth\{\versewidth\}\{But now my love is dead\}
\poemtitle\{Loves Lost\}
\begin\{verse\}[\versewidth] }
2 It is changed back at the end of this chapter.
```

$$
\begin{altverse}
\garden
\end{altverse}
$$
\end{verse}

```

Note how the alternates lines are automatically indented in the typeset result below.

\section*{Loves Lost}

I used to love my garden
But now my love is dead
For I found a bachelor's button
In black-eyed Susan's bed.
It is left up to you how you might want to add information about the author of a poem. Here is one example of a macro for this:
\newcommand\{\attrib\}[1] \{\%
\nopagebreak\{\raggedleft\footnotesize \#1\par\}\}
This can be used as in the next bit of doggerel.
\poemtitle\{Fleas\}
\settowidth\{\versewidth\}\{What a funny thing is a flea\}
\begin\{verse\}[\versewidth] }
What a funny thing is a flea. \\
You can't tell a he from a she. \\
But he can. And she can. \\
Whoopee!
\end\{verse\} }
\attrib\{Anonymous\}

\section*{Fleas}

What a funny thing is a flea.
You can't tell a he from a she.
But he can. And she can.
Whoopee!
Anonymous
The next example demonstrates the automatic line wrapping for overlong lines.
\poemtitle\{In the Beginning\}
\settowidth\{\versewidth\}\{And objects at rest tended to remain at rest\}
\begin\{verse\}[\versewidth] }
Then God created Newton, \\
And objects at rest tended to remain at rest, \(\backslash \backslash\)
And objects in motion tended to remain in motion, \\
And energy was conserved
and momentum was conserved
```

        and matter was conserved \\
    And God saw that it was conservative.
\end{verse}
\attrib{Possibly from *Analog*, circa 1950}

```

\section*{In the Beginning}

Then God created Newton, And objects at rest tended to remain at rest, And objects in motion tended to remain in motion, And energy was conserved and momentum was conserved and matter was conserved
And God saw that it was conservative.
Possibly from Analog, circa 1950
The following verse demonstrates the use of a forced linebreak. It also has a slightly different title style.
```

\poemtitle{Mathematics}
\settowidth{\versewidth}{Than Tycho Brahe, or Erra Pater:}
$$
\begin{verse}[\versewidth]
In mathematics he was greater \\
Than Tycho Brahe, or Erra Pater: \\
For he, by geometric scale, \\
Could take the size of pots of ale;\\ \settowidth{\versewidth}{Resolve by}
Resolve, by sines \\>[\versewidth] and tangents straight, \\
If bread or butter wanted weight; \\
And wisely tell what hour o' the day \\
The clock does strike, by Algebra.
\end{verse}
$$
\attrib{Samuel Butler (1612--1680)}

```

\section*{Mathematics}

In mathematics he was greater
Than Tycho Brahe, or Erra Pater:
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines
and tangents straight,
If bread or butter wanted weight;
And wisely tell what hour o' the day
The clock does strike, by Algebra.

Another limerick, but this time taking advantage of the patverse environment. If you are typesetting a series of limericks you only need specify one \indentpattern for all of them.
```

\settowidth{\versewidth}{There was a young lady of Ryde}
\indentpattern{00110}
\poemtitle{The Young Lady of Ryde}
$$
\begin{verse}[\versewidth]
\begin{patverse}
There was a young lady of Ryde \\
Who ate some apples and died. \\
The apples fermented \\
Inside the lamented \\
And made cider inside her inside.
\end{patverse}
\end{verse}
$$

```

The Young Lady of Ryde

There was a young lady of Ryde Who ate some apples and died.

The apples fermented
Inside the lamented
And made cider inside her inside.
The next example is a song that I have known since childhood. The 'forty-niner' in line 3 refers to the 1849 gold rush.
```

\settowidth{\versewidth}{0h my darling, Clementine}
\poemtitle{Clementine}
$$
\begin{verse}[\versewidth]
\linenumberfrequency{3}
\flagverse{1.} In a cavern, in a canyon, \\
Excavating for a mine, \\
Lived a miner, forty-niner, \label{vs:1} \\
And his daughter, Clementine. \\!
\flagverse{\textsc{chorus}} Oh my darling, Oh my darling, \\
Oh my darling, Clementine. \\
Thou art lost and gone for ever. \\
Dreadful sorry, Clementine. \\!
\linenumberfrequency{0}
\end{verse}
$$

```

\section*{Clementine}
1. In a cavern, in a canyon,

Excavating for a mine,
Lived a miner, forty-niner,
And his daughter, Clementine.

CHORUS Oh my darling, Oh my darling,
Oh my darling, Clementine.
6
Thou art lost and gone for ever.
Dreadful sorry, Clementine.
The last example is a much more ambitious use of \indentpattern. In this case it is defined as:
\indentpattern\{0135554322112346898779775545653222345544456688778899\}
and the result is shown on the next page.

\section*{Mouse's Tale}

Fury said to
a mouse, That he met
in the
house,
'Let us
both go to law:
\(I\) will
prosecute
you. -
Come, I'll
take no denial;

We must
have a
trial:
For
really
this morning

I've nothing to do.'
Said the
mouse to
the cur,
Such a
trial,
dear sir,
With no
jury or
judge,
would be wasting our breath.'
'I'll be judge, I'll be jury.
Said
cunning old Fury; 'I'll try
the whole
cause and condemn to
death.'
Lewis Carrol, Alice's Adventures in Wonderland, 1865

\section*{Sixteen}

\section*{Verbatims, boxes, and files}

\subsection*{16.1 Introduction}

This chapter describes some new facilities for handling verbatim text; new boxes to go around things, including verbatims; and a more friendly interface for writing to and reading from files and in some cases being able to read files verbatim, while putting them into a box with line numbers.

\subsection*{16.2 Verbatims}

I have included in the class the code for the shortvrb package Mit95 and an extended version of the verbatim package [SRR99]. I have also borrowed from the moreverb package Fai98].

When processing text verbatim LaTeX ignores any special meaning that a character may have. As a special case of this, LaTeX ignores any character in a comment.

\section*{\newcomment \(\{\langle\) comenv \(\rangle\}\)}

The macro \newcomment creates a new comment environment called 〈comenv〉. All text within the \(\langle c o m e n v\rangle\) environment will be ignored.
\[
\text { \begin\{comment } \} \text { anything \end\{comment } \}}
\]

The class provides one comment environment, namely the comment environment which is specified by
\newcomment \{comment\}
This may be useful for 'commenting out' large chunks of a source document.
\[
\begin{aligned}
& \text { \commentsoff }\{\langle\text { comenv }\rangle\} \\
& \text { \commentson }\{\langle\text { comenv }\rangle\}
\end{aligned}
\]

The declaration \commentsoff switches off the commenting within the \(\langle\) comenv \(\rangle\) comment environment, and the declaration \commentson switches on commenting within the \(\langle c o m e n v\rangle\) comment environment. In either case, \(\langle\) comenv \(\rangle\) must have been previously defined as a comment environment via \newcomment.

Suppose, for example, that you are preparing a draft document for review by some others and you want to include some notes for the reviewers. Also, you want to include some private comments in the source for yourself. You could use the comment environment for your private comments and create another environment for the notes to the reviewers. These notes should not appear in the final document. Your source might then look like:
```

\newcomment{review}
\ifdraftdoc\else
\commentsoff{review}
\i
...
$$
\begin{comment}
Remember to finagle the wingle!
\end{comment}
$$
$$
\begin{review}
\textit{REVIEWERS: Please pay particular attention to this section.}
\end{review}
$$

```

LaTeX provides the \verb command for typesetting short pieces of text verbatim; 'short' means less than one line. If you have to type a lot of verbatim bits, like macro names, it becomes very tedious to keep on doing \verb? \amacro?. The \verb* macro is similar to \verb except that it typesets the symbol \(\sqcup\) in place of a space.
```

\MakeShortVerb{\langleverbchar\rangle}
\DeleteShortVerb{\langleverbchar\rangle}

```

With the \MakeShortVerb declaration you can use a single character instead of \verb \(\langle\) char \(\rangle\). The \(\langle\) verbchar〉 argument to \MakeShortVerb is a backslash followed by a single character, for example \MakeShortVerb\{\?\}. You can then use ?...? instead of \verb?...?. To turn off the use of ? in this special manner, call \DeleteShortVerb\{\?\}.
```

$$
\begin{verbatim} anything \end{verbatim}
$$
$$
\begin{verbatim*} anything \end{verbatim*}
$$

```

The verbatim and verbatim* environments are used for typesetting any length of verbatim text.
\[
\text { \setverbatimfont }\{\langle\text { font-decl }\rangle\}
\]

The font that is used for all verbatim text is specified by \setverbatimfont. The default is:
\setverbatimfont\{\normalfont\ttfamily\}
If you wanted verbatims to be set in a smaller size, then this will do the trick:
\setverbatimfont \(\{\backslash\) normalfont \(\backslash\) small \(\backslash t t f a m i l y\}\)
```

\tabson[\langlenum\rangle]
\tabsoff

```

The standard verbatim environment ignores any TABs, or rather treats a sequence of TABs as a single space. In the class, if you use the declaration \tabson then TABs will not be ignored in subsequent verbatims. The declaration \tabsoff turns off tabbing inside verbatims. The default is \tabsoff. By default the class uses four spaces for each tab. The optional \(\langle n u m\rangle\) argument to \(\backslash\) tabson will use \(\langle n u m\rangle\) spaces for each TAB.
```

\wrappingon
\wrappingoff
\verbatimindent
\verbatimbreakchar

```

Very occasionally it may be useful to wrap long verbatim lines round onto the following line. After the declaration \wrappingon, verbatim lines that would extend into the margin will be wrapped (\wrappingoff returns the behaviour to normal). The second and later parts of a wrapped line are indented by the length \verbatimindent which can be altered in the usual manner.

It may be desireable to indicate that a line is continued on the next line. That is the role of \verbatimbreakchar. By default this is defined as:
\newcommand*\{\verbatimbreakchar\}\{\char'\\%\}
which typesets \% at the end of each line that is wrapped. To have / at the end of each line instead, do:
\renewcommand*\{\verbatimbreakchar\}\{\char' \(\backslash /\}\)
Note that trying both tabbing and wrapping together does not always work well. It is best to do only one out of the two, and make that tabbing.

There is some more on verbatims in later sections.

\subsection*{16.3 Framed boxes}

You can use framed boxes, looking like the syntax boxes here, in the standard LaTeX classes but they cannot break over a page.

The framed, shaded and leftbar environments, which can break over a page, are from the framed package Ars01b.
```

$$
\begin{framed} text \end{framed}
$$
$$
\begin{shaded} text \end{shaded}
$$
$$
\begin{leftbar} text \end{leftbar}
$$

```

The framed environment puts the text into an \fbox-like framed box the same width as the text width. The shaded environment puts the text into a coloured box, and the leftbar environment draws a vertical line at the left of the text. In all cases the text and boxes can include page breaks.
```

\FrameRule \FrameSep \FrameHeightAdjust
shadecolor

```

The thickness of the rules is the length \(\backslash\) FrameRule and the separation between the text and the box is given by the length \(\backslash\) FrameSep. The height of the frame above the baseline at the top of a page is specified by the macro \FrameHeightAdjust. The default definitions being:
\setlength \(\{\backslash\) FrameRule \(\}\{\backslash\) fboxrule \(\}\)
\setlength \(\{\backslash\) FrameSep \(\}\{3 \backslash\) fboxsep \(\}\)
\newcommand\{\FrameHeightAdjust\}\{0.6em\}
The background color in the shaded environment is specified by shadecolor which you have to specify using the color package Car98a. For example:
\usepackage\{color\}
\definecolor\{shadecolor\}\{gray\}\{0.75\}
```

\frameasnormaltrue \frameasnormalfalse

```

Following the declaration \frameasnormaltrue paragraphing within the environments will be as specified for the main text. After the declaration \frameasnormalfalse paragraphing will be as though the environments were like a minipage. The initial declaration is \frameasnormaltrue.

There is one known problem with framing: when framing is used on a page where the page header is in a smaller type than the body, the header may be moved slightly up or down. This can be avoided by putting the font size change in a group, but it seems that a larger font does not need to be grouped. For example:
\makeoddhead\{myheadings\}\{\{\tiny Tiny header\}\}\{\}\{\\LARGE Large header\}
The environments are a little delicate. You cannot use floats, footnotes or marginpars inside them, and they do not work in two column mode except for the standard LaTeX supplied one.

You can use the framed package with the memoir class, in which case you will get whatever functionality is provided by the package as it will override the class' code.
```

$$
\begin{fboxverbatim} anything \end{fboxverbatim}
$$

```

The fboxverbatim environment is, except for its name, identical to the boxedverbatim environment from the moreverb package Fai98. It puts a close fitting rectangular box around its contents, which are typeset verbatim.
```

$$
\begin{boxedverbatim} anything \end{boxedverbatim}
$$

```

The boxedverbatim environment has the flavour of both the framed and fboxverbatim environments, but it adds its own bells and whistles. In its simplest usage the contents of the environment are typeset verbatim in a rectangular box (or boxes as it allows pagebreaks) like a framed box.
```

\bvbox \bvsides \bvtopandtail \nobvbox

```

Four different kinds of framing styles are provided for the boxedverbatim environment. After a \bvbox declaration the default framing style is used, which draws rectangular boxes.

After the \bvsides declarations, rules are drawn on each side but there are no top or bottom rules; the converse is the \bvtopandtail declaration when only an initial and final horizontal rule is drawn and no side rules. No rules at all are drawn after \nobvbox.
```

\bvtopofpage{\langletext\rangle}

```

With the default framing style (\(\backslash\) bvbox) a heading can be put at the top of continuation boxes if there is too much to fit onto a page. The heading is the \(\langle t e x t\rangle\) of \bvtopofpage. The default specification is \bvtopofpage\{\} but if you wanted, say, to indicate that the verbatim was a continuation from the previous page you could do
```

\normalfont (Continued)

```
```

\linenumberfrequency{\langlenth\rangle}
\linenumberfont{\langlefont-decl\rangle}
\resetbvlinenumber

```

Exactly as in the verse environment line numbers are printed if the \(\langle n t h\rangle\) argument to \linenumberfrequency is greater than zero, and the numbers are set in the font defined via \linenumberfont. At any point outside the environment the line numbers may be reset to the initial value by \resetbvlinenumber.
```

\bvnumbersinside
\bvnumbersoutside

```

If the lines are numbered, the numbers can be put inside the box (\(\backslash\) bvnumbersinside) or outside (\bvnumbersoutside). In either case, numbers are set at the left of the lines. The default is for numbers inside the box.

Verbatim tabbing, but not wrapping, applies to the boxedverbatim environment.

\subsection*{16.4 Files}

Latex gives you the \input command to read a file but is really not much obvious help if you want to write stuff out to a file.

TeX has 16 'streams' that can be open simultaneously for writing out, and there are also 16 input streams. These streams can be attached to files so that data can be read out and read in from external files.
```

\newoutputstream{\langlestream\rangle}
\newinputstream{\langlestream\rangle}

```

The command \newoutputstream creates a new stream called \(\langle\) stream \(\rangle\) for writing out text and commands. The \(\langle\) stream \(\rangle\) argument must be just alphabetic characters with no spaces; for example myout. Similarly, the command \newinputstream creates a new stream for reading from a file. The \(\langle\) stream \(\rangle\) names must be unique - you cannot use the same name for both an input and an output stream.

If you try and create too many streams, TeX will tell you via an error message.
```

\IfStreamOpen{\langlestream \rangle}{\langletrue-code\rangle}{\langlefalse-code\rangle}

```

You can check if a stream \(\langle s t r e a m\rangle\) is currently open by \IfStreamOpen．If the stream is open then the \(\langle\) true－code \(\rangle\) argument will be processed，otherwise the stream is closed and the \(\langle\) false－code \(\rangle\) argument is processed．
```

\openoutputfile{\langlefilename\rangle}{\langlestream\rangle}
\closeoutputstream{\langlestream\rangle}

```

The macro \openoutputfile opens the file called \(\langle\) filename \(\rangle\) and the output stream \(\langle\) stream \(\rangle\) ． It then attaches the file to the stream for writing．Any pre－existing contents of \(\langle\) filname \(\rangle\) are deleted．

The macro \closeoutputstream closes the output stream \(\langle\) stream \(\rangle\) and closes whatever file is currently attached to \(\langle\) stream \(\rangle\) ．It then detaches the file from the stream．
```

$$
\begin{writeverbatim}{\langlestream\rangle} anything \end{writeverbatim}
$$

```

The writeverbatim environment takes one argument，the name of an output stream，which must be open．The contents of the environment are written out verbatim to the file currently attached to the stream．
```

\addtostream{\langlestream\rangle}{\langletext\rangle}

```

The command \addtostream writes \(\langle t e x t\rangle\) to the file currently attached to the output stream \(\langle s t r e a m\rangle\) ，which must be open．Any commands within \(\langle t e x t\rangle\) will be processed before being written．To prevent this，put \protect before any command that you do not want expanding．
```

\openinputfile{\langlefilename\rangle}{\langlestream\rangle}
\closeinputstream{\langlestream\rangle}

```

The macro \openinputfile opens the file called 〈filename〉 and the input stream \(\langle s t r e a m\rangle\) ．It then attaches the file to the stream for reading．It is an error if 〈filename〉 can not be found．

The macro \closeinputstreamcloses the input stream \(\langle\) stream \(\rangle\) and closes whatever file is currently attached to \(\langle\) stream \(\rangle\) ．It then detaches the file from the stream．
```

\readstream{\langlestream\rangle}
\readaline{\langlestream\rangle}

```

The macro \readstream reads the contents of the file that is currently associated with the input stream \(\langle\) stream \(\rangle\) ．This provides the same functionality as \(\backslash i n p u t\{\langle\) filename \(\rangle\}\) does．

The macro \readaline reads what TeX considers to be one line from the file that is currently associated with the input stream \(\langle s t r e a m\rangle\) ．Multiple lines can be read by calling \readaline multiple times．A warning is issued if there are no more lines to be read（i．e．， the end of the file has been reached）．
```

\verbatiminput{\langlefilename\}
\readverbatim{\langlestream\rangle}
\boxedverbatiminput{\langlefilename\rangle}
\readboxedverbatim{\langlestream\rangle}

```

The macro \verbatiminput is similar to \input except that it inputs the contents of the file \(\langle\) filename〉 as verbatim text．Similarly，\readverbatim reads the contents of the file that is currently associated with the input stream \(\langle\) stream \(\rangle\) as verbatim text．These two commands are equivalent to
```

$$
\begin{verbatim}
    \input{...}
    \readstream{...}
\end{verbatim}
$$
except, of course, that you cannot do that.

```

To round things out，\boxedverbatiminput inputs the contents of the 〈filename〉 file as boxed verbatim text，and \readboxedverbatim reads the contents of the file attached to \(\langle\) stream \(\rangle\) as a boxed verbatim．If you could do it，these commands are equivalent to
\begin\｛boxedverbatim\}
\input\｛．．．\}
\readstream\｛．．．\}
\end\｛boxedverbatim\}
Tabbing，wrapping and numbering are just as applicable to verbatim input texts as they are to the corresponding verbatim environments．

\section*{Seventeen}

\section*{Miscellaneous}

In which we talk of many things, but not ships or shoes or sealing wax, nor cabbages and kings.

This chapter uses the demo chapterstyle and the Ruled pagestyle. It started with the \chapterprecis command.

\subsection*{17.1 Introduction}

The class provides some minor additional facilities, which are described here.

\subsection*{17.2 Draft documents}

The draft option marks any overfull lines with black rectangles, otherwise the appearance is the same as for a final document.
```

\ifdraftdoc

```

The \ifdraftdoc macro is provided so that you can add extra things that you might want to happen when processing a draft; for example you might want to have each page header (or footer) include the word 'DRAFT'. The code to do this can be put into a construct like the following:
```

\ifdraftdoc
% special things for a draft document
\else
% perhaps special things for a non-draft document
\i

```

\subsection*{17.3 Change marks}

When preparing a manuscript it normally goes through several iterations. The macros described in this section can be used to identify changes made to a document throughout its lifecycle.

The commands below implement a simplified version of the change marking in the iso class Wil00b.
```

\changemarkstrue \changemarksfalse

```

The change marking macros only work properly when the draft class option is used. Additionaly, the marks are only printed when the \changemarkstrue declaration is in effect. Using \changemarksfalse switches off any marking.
```

\added{\langlechange-id\rangle}
\deleted{\langlechange-id\rangle}
\changed{\langlechange-id\rangle}

```

Each of these macros puts a mark and \(\langle\) change-id \(\rangle\) into the margin near where the command is given. The \added macro indicates that something has been added to the manuscript and uses \(\oplus\) as its symbol. The \deleted macro is for indicating that something has been deleted and uses the \(\neq\) symbol. The macro \changed uses the \(\Leftrightarrow\) symbol to indicate that something has been changed.

These marking commands should be attached to some word or punctuation mark in the text otherwise extraneous spaces may creep into the typeset document.

\subsection*{17.4 Trim marks}

When the memoir class showtrims option is used, trim marks can be placed on each page, usually to indicate where the stock should be trimmed to obtain the planned page size.

Trim marks can be placed at each corner of the (trimmed) page, and also at the middle of each side of the page.
```

\trimXmarks
\trimLmarks
\trimFrame
\trimNone

```

Some predefined trimming styles are provided. After the declaration \trimXmarks marks in the shape of a cross are placed at the four corners of the page. The declaration \trimLmarks calls for corner marks in the shape of an ' \(L\) ', in various orientations depending on the particular corner. After \trimFrame a frame will be drawn around each page, coinciding with the page boundaries. The declaration \trimNone disables all kinds of trim marking.
```

\trimmarks
\tmarktl \tmarktr \tmarkbr \tmarkbl
\tmarktm \tmarkmr \tmarkbm \tmarkml

```

The \trimmarks macro is responsible for displaying up to 8 marks. The marks are defined as zero-sized pictures which are placed strategically around the borders of the page.

The command \trimmarks places the pictures \tmarktl, \tmarktr, \tmarkbl, and \tmarkbr at the top left, top right, bottom right and bottom left corners of the page. The pictures \tmarktm, \tmarkmr, \tmarkbm, and \tmarkml are placed at the top middle, middle right, bottom middle and middle left of the edges of the page. All these \tmark. . macros should expand to zero-sized pictures.

\section*{\trimmark}

The declaration \trimXmarks uses \trimmark for the corner crosses. This is defined as
```

\newcommand{\trimmark}{%
$$
\begin{picture}(0,0)
        \setlength{\unitlength}{1cm}\thicklines
        \put(-2,0){\line(1,0){4}}
        \put(0,-2){\line(0,1){4}}
    \end{picture}
$$}

```
which produces a zero-sized picture of a 4 cm cross.
As an example, to draw short lines marking the half-height of the page, try this:
\(\backslash\) providecommand\{\tmarkml\}\{\}
\renewcommand\{\tmarkml\}\{\%
\begin\{picture } (0 , 0) \{ \%
\unitlength 1 mm
\thinlines
\(\backslash\) put \((-2,0)\{\backslash\) line \((-1,0)\{10\}\}\)
\end\{picture\}\}\} }
\providecommand\{\tmarkmr\}\{\}
\renewcommand\{\tmarkmr\}\{\%
\begin\{picture\} (} 0 , 0 \text {) \{\% }
\unitlength 1 mm
\thinlines
\(\backslash\) put \((2,0)\{\backslash\) line \((1,0)\{10\}\}\)
\end\{picture\}\}\} }
Thin horizontal lines of length 10 mm will be drawn at the middle left and middle right of the page, starting 2 mm outside the page boundary.

\subsection*{17.5 Sheet numbering}

One purpose of trim marks is to show a printer where the stock should be trimmed. In this application it can be useful to also note the sheet number on each page, where the sheet number is 1 for the first page and increases by 1 for each page thereafter. The sheet number is independent of the page number.

\section*{\thesheetsequence}

The macro \thesheetsequence typesets the current sheet sequence number and is analogous to the \thepage macro.
\begin{tabular}{|l|}
\hline lastsheet \\
lastpage \\
\hline
\end{tabular}

The counter lastsheet holds the number of sheets processed during the previous run of LaTeX. Similarly, the counter lastpage holds the number of the last page processed during the previous run. Note that the last page number is not necessarily the same as the last sheet number. For example:
In this document this is sheet 252 of 301 sheets, and page 218 of 273.
The previous sentence was the result of processing the following code
\textit\{In this document this is
sheet \thesheetsequence\ of \thelastsheet\sheets,
and page \thepage\ of \thelastpage.\}
You may wish to use the sheet and/or page numbers as part of some trim marks. The following will note the sheet numbers above the page.
```

\newcommand{\trimseqpage}{%
$$
\begin{picture}(0,0)
        \unitlength 1mm
        \put(0,2){\makebox(0,0)[b]{Sheet: \thesheetsequence\ of \thelastsheet}}
    \end{picture}
$$}
\let\tmarktm\trimseqpage

```

\subsection*{17.6 Page breaks before lists}

A sentence or two may be used to introduce a list (e.g., itemize) and it can be annoying if there is a page break between the introduction and the first item.
```

\noprelistbreak

```

Putting \noprelistbreak immediately before the \begin\{itemize\} should prevent a page } break. Ideally, there sould be no blank lines between the end of the introduction and the start of the list.

\subsection*{17.7 Changing counters}

This is effectively a bundling of the chngentr package Wil01e.
```

\newcounter{\langlectr\rangle}[\langlewithin\rangle]
\thectr

```

In LaTeX a new counter called, say ctr, is created by the \newcounter command as \(\backslash\) newcounter\{ctr\}. If the optional \(\langle\) within \(\rangle\) argument is given, the counter \(\langle c t r\rangle\) is reset to zero each time the counter called within is changed; the within counter must exist before it is used as the optional argument. The command \thectr typesets the value of the counter ctr. This is automatically defined for you by the \newcounter command to typeset arabic numerals.
```

\counterwithin{\langlectr\rangle}{\langlewithin\rangle}
\counterwithin*{\langlectr\rangle}{\langlewithin \rangle}

```

The \counterwithin macro makes a \(\langle c t r\rangle\) that has been initially defined by \newcounter\{ctr\} act as though it had been defined by \newcounter\{ctr\}[within]. It also redefines the \thectr command to be \thewithin. \arabic\{ctr\}. The starred version of the command does nothing to the original definition of \(\backslash\) thectr.
```

\counterwithout{\langlectr\rangle}{\langlewithin\rangle}
\counterwithout*{\langlectr\rangle}{\langlewithin\rangle}

```

The \counterwithout macro makes a \(\langle c t r\rangle\) that has been initially defined by \newcounter\{ctr\} [within] act as though it had been defined by \newcounter\{ctr\}. It also redefines the \(\backslash\) thectr command to be \arabic\{ctr\}. The starred version of the command does nothing to the original definition of \(\backslash\) thectr.

Any number of \counterwithin\{ctr\}\{...\} and \counterwithout\{ctr\}\{...\} commands can be issued for a given counter ctr if you wish to toggle between the two styles. The current value of ctr is unaffected by these commands. If you want to change the value use \setcounter, and to change the typesetting style use \renewcommand on \thectr.

\subsection*{17.8 New new and provide commands}
```

\newloglike{\langlecmd\rangle}{\langle\langlestring\rangle}
\newloglike*{\langlecmd\rangle}{\langlestring\rangle}

```

The class provides means of creating new math log-like functions. For example you might want to do
\newloglike\{\Ei\}\{Ei\}
if you are using the exponential integral function in your work. The starred version of the command creates a function that takes limits (like the \(\backslash \max\) function).

The LaTeX kernel defines the \providecommand macro that acts like \newcommand if the designated macro has not been defined previously, otherwise it does nothing. The class adds to that limited repetoire.
```

\provideenvironment{\langlename\rangle}[\langlenumargs\rangle][\langleoptarg\rangle]{\langlebegindef\rangle}{\langleenddef\rangle}
\providelength{\langlecmd\rangle}
\providecounter{\langlectr\rangle}[\langlewithin\rangle]
\provideloglike{\langlecmd\rangle}{\langlestring\rangle}
\provideloglike*{\langlecmd\rangle}{\langlestring\rangle}

```

The macros \provideenvironment, \providelength and \providecounter take the same arguments as their \new... counterparts. If the environment, length or counter has not been defined then it is defined accordingly, otherwise the macros do nothing except produce a warning message for information purposes.

The \provideloglike commands are for math log-like functions, but they do not produce any warning messages.

\subsection*{17.9 Changing macros}

Commands are provided for extending simple macro definitions. Get the patchcmd package Dow00 if you need to make other additions to definitions.
```

\addtodef{\langlemacro\rangle}{\langleprepend }\rangle}{\langle\mathrm{ append }\rangle
\addtoiargdef {\langlemacro\rangle}{\langleprepend\rangle}{\langleappend }\rangle

```

The macro \addtodef inserts \(\langle\) prepend \(\rangle\) at the start of the current definition of \(\langle\) macro \(\rangle\) and puts \(\langle a p p e n d\rangle\) at the end, where \(\langle\) macro \(\rangle\) is the name of a macro (including the backslash) which takes no arguments. The \addtoiargdef macro is similar except that \(\langle\) macro \(\rangle\) is the name of a macro that takes one argument.

For example the following are two equivalent definitions of \(\backslash\) mymacro:
\newcommand\{\mymacro\}[1]\{\# is a violinist in spite of being tone deaf\}
and
\newcommand\{\mymacro\}[1]\{\#1 is a violinist\}
\addtoiargdef\{\mymacro\}\{\}\{ in spite of being tone deaf\}
The \addtoiargdef (and \addtodef) commands can be applied several times to the same \(\langle\) macro \(\rangle\). Revising the previous example we could have
\newcommand\{\mymacro\}[1]\{\#1 is a violinist\}
\addtoiargdef \(\{\backslash\) mymacro\}\{Although somewhat elderly, \}\%
\{ in spite of being tone deaf\}
\addtoiargdef \(\{\backslash\) mymacro \(\}\}\{\) and a bagpiper\}
which is equivalent to
\newcommand\{\mymacro\}[1]\{\%
Although somewhat elderly, \#1 is a violinist
in spite of being tone deaf and a bagpiper\}
The \(\langle\) prepend \(\rangle\) and \(\langle\) append \(\rangle\) arguments may include LaTeX code, as shown in this extract from the class code:
\addtoiargdef \(\{\backslash\) date \(\}\}\{\%\)
\begingroup
\renewcommand\{\thanks\} [1] \{\}
\renewcommand\{\thanksmark\}[1]\{\}
\renewcommand\{\thanksgap\}[1]\{\}
\protected@xdef \thedate\{\#1\}
\endgroup\}
Note that in the case of \addtoiargdef an argument can also refer to the original argument of the \(\langle\) macro \(\rangle\).
\addtodef*\{〈macro \(\rangle\}\{\langle\) prepend \(\rangle\}\{\langle\) append \(\rangle\}\)
\addtoiargdef*\{〈macro \(\rangle\}\{\langle\) prepend \(\rangle\}\{\langle\) append \(\rangle\}\)
These starred versions are for use when the original \(\langle\) macro \(\rangle\) was defined via \newcommand*. Using the starred versions is like using \renewcommand* and the unstarred versions are like having used \renewcommand. It is the version (starred or unstarred) of a sequence of \addto... commands that counts when determining whether the equivalent \renew... is treated as starred or unstarred.

The \addto... macros cannot be used to delete any code from \(\langle\) macro \(\rangle\) nor to add anything except at the start and end. Also, in general, they cannot be used to change the definition of a macro that takes an optional argument, or that is starred.

\subsection*{17.10 String arguments}

In the code for the class I have sometimes used macro arguments that consist of a 'string', like the \(*\) arguments in the page layout macros (e.g., \settypeblocksize), or the flushleft, center and flushright strings for the \makeheadposition macro.
```

\nametest{\langlestr1\rangle}{\langlestr\mathcal{Z}}}
\ifsamename

```

The macro \nametest takes two strings as the arguments \(\langle s t r 1\rangle\) and \(\langle s t r 2\rangle\). It sets \ifsamename TRUE if \(\langle s t r 1\rangle\) is the same as \(\langle\operatorname{str} 2\rangle\), otherwise it sets \ifsamename FALSE. For the purposes of \nametest, a string is a sequence of characters which may include spaces and may include the \(\backslash\) backslash character; strings are equal if and only if their character sequences are identical.

Typically, I have used it within macros for checking on argument values. For example:
```

\newcommand{\amacro}[1]{%
\nametest{\#1}{green}
\ifsamename
% code for green
\i
\nametest{\#1}{red}
\ifsamename
% code for red
\i
}

```

\subsection*{17.11 Odd/even page checking}

It is difficult to check robustly if the current page is odd or even but the class does provide a robust method based on writing out a label and then checking the page reference for the label. This requires at least two LaTeX runs to stabilise. This has been extracted from the original chngpage package Wil01b.
```

\checkoddpage
\ifoddpage
\strictpagechecktrue \strictpagecheckfalse

```

The macro \checkoddpage sets \ifoddpage to TRUE if the page number is odd, otherwise it sets it to FALSE (the page number is even). The robust checking methos involves writing and reading labels, which is what is done after the command \strictpagechecktrue is issued. The simple method is just to check the current page number which, because of

TeX＇s asynchronous page breaking algorithm，may not correspond to the actual page number where the \checkoddpage commmand was issued．The simple，but faster，page checking method is used after the \strictpagecheckfalse command is issued．
```

\cplabel

```

When strict page checking is used the labels consist of a number preceded by the value of \cplabel，whose default definition is＾＿（e．g．，a label may consist of the characters＾＿21）． If this might clash with any of your labels，change \cplabel with \renewcommand，but the definition of \cplabel must be constant for any given document．

\section*{17．12 Moving to another page}

Standard LaTeX provides the \newpage，\clearpage and \cleardoublepage commands for discontinuing the current page and starting a new one．The following is a bundling of the nextpage package Wil00c．
```

\needspace{\langlelength\rangle}

```

This macro decides if there is \(\langle\) length \(\rangle\) space at the bottom of the current page．If there is it does nothing，otherwise it starts a new page．This is useful if 〈length〉 amount of material is to be kept together on one page．The \needspace macro depends on penalties for deciding what to do which means that the reserved space is an approximation．However，except for the odd occasion，the macro gives adequate results．
```

\Needspace{\langlelength\rangle}
\Needspace*{\langlelength \rangle}

```

Like \needspace，the \Needspace macro checks if there is 〈length〉 space at the bottom of the current page and if there is not it starts a new page．The command should only be used between paragraphs；indeed，the first thing it does is to call \(\backslash\) par．The \(\backslash\) Needspace command checks for the actual space left on the page and is more exacting than \needspace．

If either \needspace or \Needspace produce a short page it will be ragged bottom even if \flushbottom is in effect．With the starred \Needspace＊version，short pages will be flush bottom if \flushbottom is in effect and will be ragged bottom when \raggedbottom is in effect．

Generally speaking，use \needspace in preference to \Needspace unless it gives a bad break or the pages must be flush bottom．
```

\movetoevenpage[\langletext\rangle]
\cleartoevenpage [\langletext\rangle]

```

The \movetoevenpage stops the current page and starts typesetting on the next even numbered page．The \clear．．．version flushes out all floats before going to the next even page．The optional \(\langle t e x t\rangle\) is put on the skipped page（if there is one）．
```

\movetooddpage [\langletext\rangle]
\cleartooddpage[\langletext\rangle]

```

These macros are similar to the \. . . evenpage ones except that they jump to the next odd numbered page.

A likely example for the optional \(\langle\) text \(\rangle\) argument is
\cleartooddpage[\vspace*\{\vfill\}THIS PAGE LEFT BLANK\vspace*\{\vfill\}]
which will put 'THIS PAGE LEFT BLANK' in the centre of any potential skipped (empty) even numbered page.

\section*{\cleartorecto \cleartoverso}

These are slightly simpler forms \({ }^{1}\) of \cleartooddpage and \cleartoevenpage. For example, if you wanted the Table of Contents to start on a verso page, like in The TeXbook Knu84, then do this:

\section*{\cleartoverso \\ \tableofcontents}

\subsection*{17.13 Number formatting}

Several methods are provided for formatting numbers. Two classes of number representations are catered for. A 'numeric number' is typeset using arabic digits and a 'named number' is typeset using words.

The argument to the number formatting macros is a 'number', essentially something that resolves to a series of arabic digits. Typical arguments might be:
- Some digits, e.g., \ordinal\{123\} -> 123rd
- A macro expanding to digits, e.g., \def \temp\{3\}\ordinal\{\temp\} -> 3rd
- The value of a counter, e.g., \ordinal\{\value\{page\}\} -> 223rd
- The arabic representation of a counter, e.g., \ordinal\{\thepage\} -> 223rd

However, if the representation of a counter is not completely in arabic digits, such as \thesection which here prints as 17.13 , it will produce odd errors or peculiar results if it is used as the argument. For instance:
\ordinal\{\thesection\} -> .1317th

\section*{Numeric numbers}
```

\cardinal{{number\rangle}
\fcardinal{\langlenumber\rangle}
\fnumbersep

```

The macro \fcardinal prints its \(\langle n u m b e r\rangle\) argument formatted using \fnumbersep between each triple of digits. The default definition of \(\backslash\) fnumbersep is:

\footnotetext{
\newcommand\{\fnumbersep\}\{,\}
}

1 Perhaps more robust.

Here are some examples:
\fcardinal\{12\} -> 12
\fcardinal\{1234\} -> 1,234
\fcardinal\{1234567\} -> 1,234,567
\renewcommand\{\fnumbersep\}\{ \}\fcardinal\{12345678\} -> 12345678
The \cardinal macro is like \fcardinal except that there is no separation between any of the digits.
```

\ordinal{\langlenumber\rangle}
\fordinal{\langlenumber\rangle}
\ordscript{\langlechars\rangle}

```

The \fordinal macro typesets its \(\langle\) number \(\rangle\) argument as a formatted ordinal, using \fnumbersep as the separator. The macro \ordinal is similar except that there is no separation between any of the digits.

Some examples are:
\fordinal\{3\} -> 3rd
\fordinal\{12341\} -> 12,341st
\renewcommand\{\ordscript\}[1]\{\textsuperscript\{\#1\}\}\fordinal\{2\} -> \(2^{\text {nd }}\)
\ordinal\{1234567\} \(->1234567^{\text {th }}\)
This is the \ordinal\{\value\{chapter\}\} chapter. \(->\) This is the \(17^{\text {th }}\) chapter.
The characters denoting the ordinal (ordination?) are typeset as the argument of \ordscript, whose default definition is:
\newcommand\{\ordscript\}[1]\{\#1\}
As the above examples show, this can be changed to give a different appearance.
```

\nthstring \iststring \iindstring \iiirdstring

```

The ordinal characters are the values of the macros \nthstring (default: th) for most ordinals, \iststring (default: st) for ordinals ending in 1 like \(21^{\text {st }}\), \iindstring (default: nd) for ordinals like \(22^{\text {nd }}\), and \iiirdstring (default: rd) for ordinals like \(23^{\text {rd }}\).

\section*{Named numbers}
```

\numtoname{\langlenumber\rangle}
\numtoName{\langlenumber\rangle}
\NumToName{\langlenumber\rangle}

```

The macro \numtoname typesets its \(\langle n u m b e r\rangle\) argument using lowercase words. The other two macros are similar, except that \numtoName uses uppercase for the initial letter of the first word and \(\backslash N u m T o N a m e ~ u s e s ~ u p p e r c a s e ~ f o r ~ t h e ~ i n i t i a l ~ l e t t e r s ~ o f ~ a l l ~ t h e ~ w o r d s . ~\)

As examples:
\numtoname\{12345\} \(\rightarrow\) twelve thousand, three hundred and forty-five
\numtoName\{12345\} -> Twelve thousand, three hundred and forty-five \NumToName\{12345\} -> Twelve Thousand, Three Hundred and Forty-Five The minimum number in TeX is \numtoname\{-2147483647\}

\section*{(i.e., \fcardinal\{-2147483647\}) ->}

The minimum number in TeX is minus two billion, one hundred and forty-seven million, four hundred and eighty-three thousand, six hundred and forty-seven (i.e., \(-2,147,483,647\))
```

\ordinaltoname{\langlenumber\rangle}
\ordinaltoName{\langlenumber\rangle}
\OrdinalToName{\langlenumber\rangle}

```

These three macros are similar to \numtoname, etc., except that they typeset the argument as a wordy ordinal.

For example:
This is the \ordinaltoname\{\value\{chapter\}\} chapter. -> This is the seventeenth chapter.
```

\namenumberand \namenumbercomma \tensunitsep

```

By default some punctuation and conjunctions are used in the representation of named numbers. According to both American and English practice, a hyphen should be inserted between a 'tens' name (e.g., fifty) and a following unit name (e.g., two). This is represented by the value of \tensunitsep. English practice, but not American, is to include commas (the value of \namenumbercomma) and conjunctions (the value of \namenumberand) in strategic positions in the typesetting. These macros are initially defined as:
\(\backslash\) newcommand* \(\{\) namenumberand \(\}\{\) and \(\}\)
\newcommand*\{\namenumbercomma\}\{, \}
\(\backslash\) newcommand \(*\{\) tensunitsep \(\}\{-\}\)
The next example shows how to achieve American typesetting.
\renewcommand*\{\namenumberand\}\{\}
\renewcommand*\{\namenumbercomma\}\{ \}
The maximum number in TeX is \numtoname\{2147483647\} (i.e., \cardinal\{2147483647\}). -> The maximum number in TeX is two billion one hundred forty-seven million four hundred eighty-three thousand six hundred forty-seven (i.e., 2147483647).
```

\minusname \lcminusname \ucminusname

```

When a named number is negative, \minusname is put before the spelled out number. The definitions of the above three comands are:
\newcommand*\{\lcminusname\}\{minus \}
\newcommand*\{\ucminusname\}\{Minus \}
\(\backslash\) let \(\backslash\) minusname \(\backslash l\) cminusname
which means that 'minus' is normally all lowercase. To get 'minus' typeset with an initial uppercase letter simply:
\(\backslash\) let \(\backslash\) minusname \ucminusname
Only one version of \namenumberand is supplied as I consider that it is unlikely that 'and' would ever be typeset as 'And'. If the initial uppercase is required, renew the macro when appropriate.

There is a group of macros that hold the names for the numbers. To typeset named numbers in a language other than English these will have to be changed as appropriate.

You can find them in the class and patch code. The actual picking and ordering of the names is done by an internal macro called \(\backslash\) n@me@number. If the ordering is not appropriate for a particular language, that is the macro to peruse and modify. Be prepared, though, for the default definitions to be changed in a later release in case there is a more efficient way of implementing their functions.

\section*{Fractions}

When typesetting a simple fraction in text there is usually a choice of two styles, like \(3 / 4\) or \(\frac{3}{4}\), which do not necessarily look as though they fit in with their surroundings. These fractions were typeset via:
```

... like 3/4 or $\frac{3}{4}$ ...

```
```

\slashfrac{\langletop\rangle}{\langlebottom\rangle}
\slashfracstyle{\langlenum\rangle}

```

The class provides the \slashfrac command which typesets its arguments like \(3 / 4\). Unlike the \frac command which can only be used in math mode, the \slashfrac command can be used in text and math modes.

The \slashfrac macro calls the \slashfracstyle command to reduce the size of the numbers in the fraction. You can also use \slashfracstyle by itself.

In summary, fractions can be typeset like \(3 / 4\) or \(\$ \backslash f r a c\{3\}\{4\} \%\)
or \slashfrac\{3\}\{4\} or \slashfracstyle\{3/4\} because several choices are provided.
In summary, fractions can be typeset like \(3 / 4\) or \(\frac{3}{4}\) or \(3 / 4\) or \(3 / 4\) because several choices are provided.
```

\textsuperscript{\langlesuper\rangle}
\textsubscript{\langlesub\rangle}

```

While on the subject of moving numbers up and down, the kernel provides the \textsuperscript macro for typesetting its argument as though it is a superscript. The class also provides the \textsubscript macro for typesetting its argument like a subscript.

You can typeset superscripts like \textsuperscript\{3\}/4 and subscripts like \(3 / \backslash\) textsubscript \(\{4\}\),
or both like \textsuperscript\{3\}/\textsubscript\{4\}.
You can typeset superscripts like \({ }^{3} / 4\) and subscripts like \(3 / 4\), or both like \({ }^{3} / 4\).

\subsection*{17.14 An array data structure}

The class includes some macros for supporting the patverse environment which may be more generally useful.
\[
\backslash \text { newarray }\{\langle\text { arrayname }\rangle\}\{\langle\text { low }\rangle\}\{\langle\text { high }\rangle\}
\]
\newarray defines the \(\langle\) arrayname \(\rangle\) array, where \(\langle\) arrayname \(\rangle\) is a name like MyArray. The lowest and highest array indices are set to \(\langle l o w\rangle\) and \(\langle h i g h\rangle\) respectively, where both are integer numbers.
```

\setarrayelement {\langlearrayname\rangle}{\langle\mathrm{ index }\rangle}{\langletext\rangle}
\getarrayelement {\langlearrayname\rangle}{\langleindex\rangle}{\langleresult\rangle}

```

The \(\backslash\) setarrayelement macro sets the \(\langle\) index \(\rangle\) location in the \(\langle\) arrayname \(\rangle\) array to be \(\langle t e x t\rangle\). Conversely, \getarrayelement sets the parameterless macro \(\langle\) result \(\rangle\) to the contents of the \(\langle\) index \(\rangle\) location in the \(\langle\) arrayname \(\rangle\) array. For example:
\setarrayelement \(\{\) My Array \(\}\{23\}\left\{\$ 2^{\wedge}\{23\} \$\right\}\)
\getarrayelement \(\{\) My Array \(\}\{23\}\{\backslash\) result \(\}\)
will result in \result being defined as \def \(\backslash\) result \(\left\{\$ 2^{\wedge}\{23\} \$\right\}\).
```

\checkarrayindex{\arrayname\rangle}{\langleindex\rangle}
\ifbounderror

```
\checkarrayindex checks if \(\langle\) arrayname \(\rangle\) is an array and if \(\langle\) index \(\rangle\) is a valid index for the array. If both conditions hold then \ifbounderror is set FALSE, but if either 〈arrayname〉 is not an array or, if it is, \(\langle\) index \(\rangle\) is out of range then \ifbounderror is set TRUE.
```

\stringtoarray{\langlearrayname\}{\langlestring\rangle}
\arraytostring{\langlearrayname\rangle}{\langleresult\rangle}

```

The macro \stringtoarray puts each character from \(\langle\) string \(\rangle\) sequentially into the \(\langle\) arrayname \(\rangle\) array, starting at index 1. The macro \arraytostring assumes that \(\langle\) arrayname \(\rangle\) is an array of characters, and defines the macro \(\langle\) result \(\rangle\) to be that sequence of characters. For example:
\stringtoarray\{MyArray\}\{Chars\}
\arraytostring\{MyArray\}\{\MyString\}
is equivalent to \def \(\backslash\) MyString\{Chars\}.
```

\checkifinteger{\langlenum\rangle}
\ifinteger

```

The command \checkifinteger ckecks if \(\langle n u m\rangle\) is an integer (not less than zero). If it is then \ifinteger is set TRUE, otherwise it is set FALSE.

\subsection*{17.15 pdfLaTeX}

Both LaTeX and pdfLaTeX can be run on the same document. LaTeX produces a .dvi file as output, while pdfLaTeX can produce either a .dvi or a .pdf file.

By default pdfLaTeX produces a .dvi file but there may be a configuration file on your system that makes pdfLaTeX default to producing a .pdf instead. To ensure a .pdf
output file you have to put the incantation \(\backslash p d f o u t p u t=1\) near the start of the preamble. Conversely, to ensure a .dvi file put \(\backslash p d f o u t p u t=0\) instead. Unfortunately this command is unknown to LaTeX so if you used LaTeX it would hiccup.
\ifpdf ... \fi

The class provides \ifpdf which is true when the document is being processed by pdfLaTeX and false otherwise. You can use it like this:
```

\ifpdf
code for pdfLaTeX only e.g., \pdfoutput=1 or \pdfoutput=0
\else
code for LaTeX only
\i

```

If there is no LaTeX specific code then don't write the \else part.

\subsection*{17.16 Leading}

LaTeX automatically uses different leading for different font sizes.

\section*{\baselineskip \onelineskip}

At any point in a document the standard LaTeX \baselineskip length contains the current value of the leading \({ }^{2}\). The class provides the length \onelineskip which contains the initial leading for the normal font. This value is useful if you are wanting to specify length values in terms of numbers of lines of text.

\subsection*{17.17 Minor space adjustment}

The kernel provides the \(\backslash\), macro for inserting a thin space in both text and math mode. There are other space adjustment commands, such as \! for negative thin space, and \(\backslash\) : and \(\backslash\); for medium and thick spaces, which can only be used in math mode.

\section*{\thinspace \medspace \: \!}

On occasions I have found it useful to be able to tweak spaces in text by some fixed amount, just as in math mode. The kernel macro \thinspace specifies a thin space, which is \(3 / 18 \mathrm{em}\). The class \medspace specifies a medium space of \(4 / 18 \mathrm{em}\). As mentioned, the kernel macro \(\backslash\) : inserts a medium space in math mode. The class version can be used in both math and text mode to insert a medium space. Similarly, the class version of \! can be used to insert a negative thin space in both text and math mode.

The math thick space is \(5 / 18 \mathrm{em}\). To specify this amount of space in text mode you can combine spacing commands as:
\(\backslash: \backslash: \backslash!\)
which will result in an overall space of \(5 / 18 \mathrm{em}(\) from \((4+4-3) / 18)\).

\footnotetext{
2 This statement ignores any attempts to stretch the baseline.
}

\subsection*{17.18 Cross references}

LaTeX supplies the \ref and \pageref commands for cross referencing to a label or a page which has a label on it.
```

\fref{\langlelabel\rangle} \figurerefname
\tref{\langlelabel\rangle} \tablerefname
\pref{\langlelabel\rangle} \pagerefname

```

The class provides these more particular named references to a figure, table or page. For example the default definitions of \fref and \pref are
\newcommand\{\fref\}[1]\{\figurerefname~\ref \{\#1\}\}
\newcommand\{\pref\}[1]\{\pagerefname~ \(\backslash\) pageref \(\{\# 1\}\}\)
and can be used as
\ldots footnote parameters are shown in \(\backslash f r e f\{f i g: f n\}\) on \(\backslash\) pref\{fig:fn\}.
which in this document prints as:
...footnote parameters are shown in Figure 13.1 on page 174
```

\Pref{\langlelabel\rangle} \partrefname
\Cref{\langlelabel\rangle} \chapterrefname
\Sref{\langlelabel\rangle} \sectionrefname

```

Also provided are named references to labelled Part (\(\backslash\) Pref), Chapter (\(\backslash\) Cref) and sectional (\Sref) divisions. These are all defined like
\newcommand\{\Sref\}[1]\{\sectionrefname\ref \{\#1\}\}
with no tie between the name and the \ref.
In this document
'In \Cref\{chap:misc\} there is a section
(\Sref\{sec:xrefthis\}) about cross references.'
is typeset as:
'In Chapter 17 there is a section (17.18) about cross references.'
It can be useful to refer to parts of a document by name rather than number, as in The chapter \textit\{\titleref\{chap:bringhurst\}\} describes \ldots
The chapter An example design describes...
There are two packages, nameref Rahtz01] and titleref Ars01a, that let you refer to things by name instead of number.

Name references were added to the class as a consequence of adding a second optional argument to the sectioning commands. I found that this broke the nameref package, and hence the hyperref package as well, so they had to be fixed. The change also broke Donald Arseneau's titleref package, and it turned out that nameref also clobbered titleref. The class also provides titles, like \poemtitle, that are not recognised by either of the packages. From my viewpoint the most efficient thing to do was to enable the class itself to provide name referencing.
```

 [undefined](#\langlekey\rangle) \pageref{\langlekey\rangle}

\titleref{\langlekey\rangle}

\headnamereftrue \headnamereffalse

```

The macro \titleref is an addition to the usual set of cross referencing commands. Instead of typesetting a number it typesets the title associated with the labelled number. This is, of course, only useful if there is an associated title, such as from a \caption or \section command. As a bad example:
```

Labelling for \verb?\titleref? may be applied to:

1. Chapters, sections, etc. 
2. Items in numbered lists, etc. ··· 

Item [sec:xref:item2](#sec:xref:item2) in section~[sec:xref](#sec:xref) mentions captions
while item \titleref{sec:xref:item3} in the same section
*\titleref{sec:xref}* lists other things.

```

Labelling for \titleref may be applied to:
1. Chapters, sections, etc.
2. Captions
3. Legends
4. Poem titles
5. Items in numbered lists, etc.

Item 2 in section 17.18 mentions captions while item Cross references in the same section Cross references lists other things.

As the above example shows, you have to be a little careful in using \titleref. Generally speaking, \titleref \(\{\langle k e y\rangle\}\) produces the last named thing before the \label that defines the \(\langle k e y\rangle\).

Chapters, and the lower level sectional divisions, may have three different title texts - the main title, the title in the ToC , and a third in the page header. By default (\headnamereffalse) the ToC title is produced by \titleref. Following the declaration \(\backslash\) headnamereftrue the text intended for page headers will be produced.

NOTE: Specifically with the memoir class, do not put a \label command inside an argument to a \chapter or \section or \caption, etc., command. Most likely it will either be ignored or referencing it will produce incorrect values. This restriction does not apply to the standard classes, but in any case I think it is good practice not to embed any \label commands.
```

\currenttitle

```

If you just want to refer to the current title you can do so with \currenttitle. This acts as though there had been a label associated with the title and then \titleref had been used to refer to that label. For example:

This sentence in the section titled '\currenttitle' is an example of the use of the command \verb? \currenttitle?.

This sentence in the section titled 'Cross references' is an example of the use of the command \currenttitle.
\[
\text { \theTitleReference\{ }\langle\text { num }\rangle\}\{\langle\text { text }\rangle\}
\]

Both \titleref and \currenttitle use the \theTitleReference to typeset the title. This is called with two arguments - the number, \(\langle n u m\rangle\), and the text, \(\langle\) text \(\rangle\), of the title. The default definition is:
\newcommand\{\theTitleReference\} [2] \{\#2\}
so that only the \(\langle t e x t\rangle\) argument is printed. You could, for example, change the definition to
\renewcommand\{\theTitleReference\}[2]\{\#1\space \textit\{\#2\}\}
to print the number followed by the title in italics. If you do this, only use \titleref for numbered titles, as a printed number for an unnumbered title (a) makes no sense, and (b) will in any case be incorrect.

The commands \titleref, \theTitleReference and \currenttitle are direct equivalents of those in the titleref package [Ars01a.
```

\namerefon \namerefoff

```

Implementing name referencing has had an unfortunate side effect of turning some arguments into moving ones; the argument to the \legend command is one example. If you don't need name referencing you can turn it off by the \namerefoff declaration; the \namerefon declaration enables name referencing.

\subsection*{17.19 Words and phrases}

The class provides several macros that expand into English words or phrases. To typeset in another language these need to be changed, or an author or publisher may want some changes made to the English versions. The following lists the macros and their default values.
\contentsname Contents
\listfigurename List of Figures
\listtablename List of Tables
\abstractname Abstract
\partname Part
\chaptername Chapter
\appendixname Appendix
\appendixtocname Appendices
\appendixpagename Appendices
\bibname Bibliography
\indexname Index
\figurename Figure
\tablename Table
\figurerefname Figure
```

    \tablerefname Table
        \pagename page
    \pagerefname page
    \partrefname Part (defined as \newcommand{\partrefname}{Part }\mp@subsup{}{}{~}}
    \chapterrefname Chapter (defined as \newcommand{\chapterrefname}{Chapter~})

\sectionrefname §(defined as \newcommand{\sectionrefname}{\S})

        The above definitions are simple - for example
            \newcommand{\partname}{Part}
        and so can be also changed simply.
    The definitions of the macros for the names of numbers are more complex - for example for the number 11 (eleven)
\newcommand $*\{\backslash$ nNamexi $\}\{\backslash$ iflowertonumname elelse $E \backslash f i$ leven $\}$
That is, each definition includes both a lowercase and an uppercase initial letter, so a bit more care has to be taken when changing these. For specifics read the documentation of the class code.

```

\subsection*{17.20 Symbols}

LaTeX lets you typeset an enormous variety of symbols. The class adds nothing to the standard LaTeX capabilities in this respect. If you want to see what symbols are available then get a copy of Scott Pakin's The Comprehensive LaTeX Symbol List [Pak01]. You may have to do a little experimentation to get what you want, though.

For example, the \texttrademark command produces the trademark symbol \({ }^{\mathrm{TM}}\), but the \textregistered command produces \(®\). When I wanted to use the registered trademark symbol it needed to be typeset like a superscript instead of on the baseline. The \textsuperscipt macro typesets its argument like a superscript, so using
\textsuperscript \(\{\backslash\) textregistered\}
gave the required result \({ }^{\circledR}\).

\subsection*{18.1 INTRODUCTION}

In this chapter I will work through a reasonably complete design exercise. The chapter is typeset using the results of the exercise.

Rather than trying to invent something myself I am taking the design of Bringhurst's The Elements of Typographic Style Bri92] as the basis of the exercise. This is sufficiently different from the normal LaTeX appearance to demonstrate most of the class capabilities, and also it is a design by a leading proponent of good typography.

As much as possible, this chapter is typeset according to the results of the exercise to provide both a coding and a graphic example.

\subsection*{18.2 DESIGN REQUIREMENTS}

The Elements of Typographic Style is typeset using Minion as the text font and Syntax (a sans font) for the captions. The page layout has been shown diagramatically in Figure 2.2 on page 16, but further details need to be described for those not fortunate enough to have a copy of their own.

The trimmed size of a page is 23 by 13.3 cm . The foredge is 3.1 cm and the top margin is 1.9 cm .

As already noted, the font for the main text is Minion, with 12 pt leading on a 21 pc measure with 42 lines per page. For the purposes of this exercise I will assume that Minion can be replaced by Computer Modern Roman at 10pt (like this manual). The captions to figures and tables are unnamed and unnumbered and typeset in Syntax. The captions give the appearance of being in a smaller font size than the main text, which is often the case. I'll assume that the \small \sfseries CMR font will reasonably do for the captions.

The footer is the same width as the typeblock and the folio is placed in the footer at the foredge. There are two blank lines between the bottom of the typeblock and the folio.

There is no header in the usually accepted sense of the term but the chapter title is put on recto pages and section titles are on verso pages. The running titles are placed in the foredge margin level with the seventh line of the text in the typeblock. The recto headers are typeset raggedright and the verso ones raggedleft.

Bringhurst also uses many marginal notes, their maximum width being about 51 pt , and typeset raggedright in a smaller version of the textfont.

Chapter titles are in small caps, lowercase, in a larger font than for the main text, and a rule is placed between the title and the typeblock. The total vertical space used by a chapter title is three text lines. Chapters are not numbered in the text but are in the Table of Contents.

Section titles are again in small caps, lowercase, in the same size as the text font. The titles are numbered, with both the chapter and section number.

A subsection title, which is the lowest subdivision in the book, is in the italic form of the textfont and is typeset as a numbered non-indented paragraph. These are usually multiline as Bringhurst sometimes uses them like an enumerated list, so on occasion there is a subsection title with no following text.

Only chapter titles are put into the ToC , and these are set raggedright with the page numbers immediately after the titles. There is no LoF or LoT.

Note that unlike the normal LaTeX use of fonts, essentially only three sizes of fonts are used - the textfont size, one a bit larger for the chapter titles, and one a bit smaller for marginal notes and captions. Also, bold fonts are not used except on special occasions, such as when he is comparing font families and uses large bold versions to make the differences easier to see.

Specifying
the page and typeblock

\subsection*{18.3 SPECIFYING THE PAGE AND TYPEBLOCK}

The first and second things to do are to specify the sizes of the page after trimmming and the typeblock. The trimmed size is easy as we have the dimensions.
\settrimmedsize\{23cm\}\{13.3cm\}\{*\}
However, there is a trick to setting the height of the typeblock in terms of lines of text. The height calculation ensures that an integral number of lines can fit in the typeblock, and as well as the specified height for the block some more height is added so that the final height is approximately measured from the base of the bottom line of text to the top of the first line of text. This is a complicated way of saying that if you want \(N\) lines of text, only ask for \(N-1\). We want 42 lines so we give the height of the typeblock as 41 times the distance between two normal text lines (i.e., times \onelineskip)
\settypeblocksize\{41\onelineskip\}\{21pc\}\{*\}
To make life easier, we'll do no trimming of the top of the stock
\setlength\{\trimtop\}\{0pt\}
but will trim the foredge. The next set of calculations first sets the value of the \trimedge to be the \stockwidth; subtracting the trimmed \paperwidth then results in \trimedge being the amount to trim off the foredge.
\setlength\{\trimedge\}\{\stockwidth\}
\addtolength\{\trimedge\}\{-\paperwidth\}
The sizes of the trimmed page and the typeblock have now been specified. The typeblock is now positioned on the page. The sideways positioning is easy as we know the foredge margin to be 3.1 cm .
\setlrmargins \(\{*\}\{3.1 \mathrm{~cm}\}\{*\}\)
The top margin is specified as 1.9 cm , which is very close to four and a half lines of text. Just in case someone might want to use a different font size, I'll specify the top margin so that it is dependent on the font size. The \footskip can be specified now as well (it doesn't particularly matter what we do about the header-related lengths as there isn't anything above the typeblock).
\setulmargins\{4.5\onelineskip\}\{*\}\{*\}
\setheadfoot\{\onelineskip\}\{3\onelineskip\}
\setheaderspaces\{\onelineskip\}\{*\}\{*\}
Lastly define the dimensions for any marginal notes.
\setmarginnotes\{17pt\}\{51pt\}\{\onelineskip\}
If this was for real, the page layout would have to be checked and implemented.
\checkandfixthelayout
It is possible to implement this layout just for this chapter but I'm not going to tell you either how to do it, or demonstrate it. Except under exceptional circumstances it is not good to make such drastic changes to the page layout in the middle of a document.

However, the picture on page 236 illustrates how this layout would look on US letterpaper stock. Looking at the illustration suggests that the layout would look rather odd unless the stock was trimmed down to the page size - another reason for not switching the layout here.

\subsection*{18.4 SPECIFYING THE SECTIONAL TITLING STYLES}

\section*{The chapter style}

Recapping, chapter titles are in small caps, lowercase, in a larger font than for the main text, and a rule is placed between the title and the typeblock. The total vertical space used by a chapter title is three text lines. Chapters are not numbered in the text but are in the Table of Contents. Titles in the ToC are in mixed case.

The definition of the chapterstyle is remarkably simple, as shown below.
```

%% Bringhurst chapter style
\makechapterstyle{bringhurst}{%





}

```

Most of the specification consists of nulling the majority of the normal LaTeX specification, and modifying just two elements.

The chapter title (via \printchaptertitle) is typeset raggedright using the \Large smallcaps fonts. The \(\backslash\) MakeLowercase macro is used to ensure that the entire title is lowercase before typesetting it. Titles are input in mixed case.

After the title is typeset the \afterchaptertitle macro specifies that one line is skipped, a horizontal rule is drawn and then another line is skipped.

\section*{Lower level divisions}

Section titles are in small caps, lowercase, in the same size as the text font. The titles are numbered, with both the chapter and section number.

The specification is:
```

\setsecheadstyle{\raggedright\scshape\MakeLowercase}

```
 \setbeforesecskip\{-\onelineskip\}
 \setaftersecskip\{\onelineskip\}

The macro \setsecheadstyle lowercases the title and typesets it small caps.
The default skips before and after titles are rubber lengths but this does not bode well if we are trying to line something up with a particular line of text - the presence of section titles may make slight vertical adjustments to the text lines because of the flexible

Dashed lines represent the actual page size after trimming the stock.

Lengths are to the nearest pt.
\begin{tabular}{ll}
\stockheight \(=795 \mathrm{pt}\) & \stockwidth \(=614 \mathrm{pt}\) \\
\pageheight \(=654 \mathrm{pt}\) & \pagewidth \(=378 \mathrm{pt}\) \\
\textheight \(=502 \mathrm{pt}\) & \textwidth \(=252 \mathrm{pt}\) \\
\trimtop \(=0 \mathrm{pt}\) & \trimedge \(=236 \mathrm{pt}\) \\
\uppermargin \(=54 \mathrm{pt}\) & \spinemargin \(=38 \mathrm{pt}\) \\
\headheight \(=12 \mathrm{pt}\) & \headsep \(=30 \mathrm{pt}\) \\
\footskip \(=36 \mathrm{pt}\) & \marginparsep \(=17 \mathrm{pt}\) \\
\marginparpush = 12pt & \columnsep = 10pt \\
\columnseprule = 0.0pt &
\end{tabular}

An illustration of Bringhurst's page layout style when printed on US letter paper stock. Also shown are the values used for the page layout parameters for this design.
spacing. So, we have to try and have fixed spacings. A single blank line is used before (\setbeforesecskip) and after (\setaftersecskip) the title text.

A subsection title, which is the lowest subdivision in the book, is in the italic form of the textfont and is typeset as a numbered non-indented paragraph. The code for this is below.
```

\setsubsecheadstyle{\sethangfrom{\noindent \#\#1}\raggedright\itshape}
\setbeforesubsecskip{-\onelineskip}
\setaftersubsecskip{\onelineskip}

```

As in the redefinition of the \section style, there are fixed spaces before and after the title text. The title is typeset (\setsubsecheadstyle) raggedright in a normal sized italic font. The macro \sethangfrom is used to to redefine the internal \@hangfrom macro so that the title and number are typeset as a block paragraph instead of the default hanging paragraph style. Note the use of the double \#\# mark for denoting the position of the argument to \@hangfrom.

\subsection*{18.5 SPECIFYING THE PAGESTYLE}

The pagestyle is perhaps the most interesting aspect of the exercise. Instead of the chapter and section titles being put at the top of the pages they are put in the margin starting about seven lines below the top of the typeblock. The folios are put at the bottom of the page aligned with the outside of the typeblock.

As the folios are easy, we'll deal with those first.
\(\% \%\) Bringhurst page style
\makepagestyle\{bringhurst\}
\(\backslash\) makeevenfoot \(\{\) bringhurst \(\}\{\backslash\) thepage \(\}\}\}\)
\(\backslash\) makeoddfoot \(\{\) bringhurst \(\}\}\}\{\backslash\) thepage \(\}\)
Putting text at a fixed point on a page is typically done by first putting the text into a zero width picture (which as far as LaTeX is concerned takes up zero space) and then placing the picture at the required point on the page. This can be done by hanging it from the header.

We might as well treat the titles so that they will align with any marginal notes, which are \marginparsep (17pt) into the margin and \marginparwidth (51pt) wide. Earlier in the manual I defined two lengths called \pwlayi and \pwlayii which are no longer used. I will use these as scratch lengths in performing some of the necessary calculations.

For the recto page headers the picture will be the \(\langle\) right \(\rangle\) part of the header and for the verso pages the picture will be the 〈left〉 part of the header, all other parts being empty.

For the picture on the \(\langle\) right \(\rangle\) the text must be 17 pt to the right of the origin, and some distance below the origin. From some experiments, this distance turns out to be the \headsep plus the \topskip plus 7.3 lines, which is calculated as follows:
\setlength\{\pwlayi\}\{\headsep\}
\addtolength\{\pwlayi\}\{\topskip\}
\addtolength\{\pwlayi\}\{7.3\onelineskip\}
There is a nifty internal LaTeX macro called \strip@pt which you probably haven't heard about, and I have only recently come across. What it does is strip the 'pt' from a following length, reducing it to a plain real number. Remembering that the default \unitlength is 1 pt we can do the following, while making sure that the current \unitlength is 1 pt :
```

    \makeatletter
    \newcommand{\bringpicr}[1]{%
        \setlength{\unitlength}{1pt}
        \begin{picture}(0,0)
            \put(\strip@pt\marginparsep, -\strip@pt\pwlayi){%
                \begin{minipage}[t]{\marginparwidth}
                        \raggedright\itshape #1
            \end{minipage}}
        \end{picture}
    }
    ```
 \(\backslash\) makeatother
The new macro \bringpicr \(\{\langle t e x t\rangle\}\) puts \(\langle t e x t\rangle\) into a minipage of width \(\backslash\) marginparwidth,
typeset raggedright in an italic font, and puts the top left of the minipage at the position
(\(\backslash\) marginparsep, \(-\backslash p w l a y i\)) in a zero width picture.

We need a different picture for the \(\langle l e f t\rangle\) as the text needs to be typeset raggedleft with the right of the text 17 pt from the left of the typeblock. I will use the length \(\backslash \mathrm{pwlayii}\) to calculate the sum of \marginparsep and \marginparwidth. Hence:
```

\makeatletter
\setlength{\pwlayii}{\marginparsep}
\addtolength{\pwlayii}{\marginparwidth}
\newcommand{\bringpicl}[1]{%
\setlength{\unitlength}{1pt}
$$
\begin{picture}(0,0)
        \put(-\strip@pt\pwlayii, -\strip@pt\pwlayi){%
            \begin{minipage}[t]{\marginparwidth}
                \raggedleft\itshape #1
        \end{minipage}}
    \end{picture}
$$
}
\makeatother

```

The new macro \(\backslash\) bringpicl \(\{\langle t e x t\rangle\}\) puts \(\langle t e x t\rangle\) into a minipage of width \(\backslash\) marginparwidth, typeset raggedleft in an italic font, and puts the top left of the minipage at the position (-(\marginparsep+\marginparwidth), -\pwlayi) in a zero width picture.

Now we can proceed with the remainder of the pagestyle specification. The next bit puts the chapter and section titles into the \(\backslash . \ldots\) mark macros.
```

$\backslash$ makeatletter
\makepsmarks\{bringhurst\}\{\%
\let $\$ @mkboth $\backslash$ markboth
\def \chaptermark\#\#1\{\markboth\{\#\#1\}\{\#\#1\}\}
\def\sectionmark\#\#1\{\markright\{\#\#1\}\}
\}

```
\makeatother

Finally, specify the evenhead using \bringpicl with the section title as its argument, and the oddhead using \bringpicr with the chapter title as its argument.
\(\backslash\) makeevenhead\{bringhurst\}\{\bringpicl\{\rightmark\}\}\{\}\{\}
\(\backslash\) makeoddhead\{bringhurst \(\}\}\}\{\backslash\) bringpicr\{\leftmark \(\}\}\)

\subsection*{18.6 CAPTIONS AND THE TOC}

The captions to figures and tables are set in a small sans font and are neither named nor numbered, and there is no LoF or LoT. Setting the caption titles in the desired font is simple:

\section*{\captiontitlefont\{\small\sffamily\}}

There are two options regarding table and figure captioning: either use the \legend command (which produces an anonymous unnumbered title) instead of the \caption command, or use the \caption command with a modified definition. Just in case the design might change at a later date to required numbered captions, it's probably best to use a modified version of \caption. In this case this is simple, just give the \caption command the same definition as the \legend command.

\section*{\let\caption\legend}

An aside: I initially used the default caption style (block paragraph) for the diagram on page 236, but this looked unbalanced so now it has the last line centered. As a float environment, like any other environment, forms a group, you can make local changes within the float. I actually did it like this:
```

\captiontitlefont{\small\sffamily}
\captionstyle{\centerlastline}
\legend{...} 

```

For fine typesetting you may wish to change the style of particular captions. The default style for a single line caption works well, but for a caption with two or three lines either the centering or centerlastline style might look better. A very long caption is again probably best done in a block paragraph style.

Only chapter titles are included in the ToC. To specify this we use the \settocdepth command.
\settocdepth\{chapter\}
The ToC is typeset raggedright with no leaders and the page numbers coming immediately after the chapter title. This is specified via:
\renewcommand\{\cftchapterfont\}\{\normalfont\}
\renewcommand\{\cftchapterpagefont\}\{\normalfont\}
\renewcommand\{\cftchapterpresnum\}\{\bfseries\}
\renewcommand\{\cftchapterleader\}\{\}
\renewcommand\{\cftchapterafterpnum\}\{\cftparfillskip\}

\subsection*{18.7 PREAMBLE OR PACKAGE?}

When making changes to the document style, or just defining a new macro or two, there is the question of where to put the changes - in the preamble of the particular document or into a separate package?

If the same changes/macros are likely to be used in more than one document then I suggest that they be put into a package. If just for the single document then the choice remains open.

I have presented the code in this chapter as though it would be put into the preamble, hence the use of \makeatletter and \makeatother to surround macros that include the © character. The code could just as easily be put into a package called, say, bringhurst. That is, by putting all the code, except for the \makeatletter and \makeatother commands, into a file called bringhurst.sty. It is a good idea also to end the code in the file with \endinput; LaTeX stops reading the file at that point and will ignore any possible garbage after \endinput.

Preamble or package?

You then use the bringhurst package just like any other by putting
\usepackage\{bringhurst\}
in your document's preamble.

\section*{Appendices}

\section*{A Packages and macros}

This chapter is typeset with the section chapterstyle, otherwise it uses the layout defined in Chapter 18 .

\section*{A. 1 INTRODUCTION}

The memoir class does not provide for everything that you have seen in the manual. I have used some packages that you are very likely to have in your LaTeX distribution, and have supplemented these with some additional macros, some of which I will show you.

\section*{A. 2 PACKAGES}

The packages that I have used that you are likely to have, and if you do not have them please consider getting them, are:
- url Ars99] is for typesetting URL's without worrying about special characters or line breaking.
- fixltx2e MC00 eliminates some infelicities of the original LaTeX kernel. In particular it maintains the order of floats on a twocolumn page and ensures the correct marking on a twocolumn page.
- alltt [Bra97] is a basic package which provides a verbatim-like environment but \(\backslash,\{\), and \(\}\) have their usual meanings (i.e., LaTeX commands are not disabled).
- graphicx CR99 is a required package for performing various kinds of graphical functions.
The package that I used and you most likely do not have is layouts Wil99a. I used it for all the layout diagrams. For example, Figure 8.1 and Figure 8.2 were drawn simply by:
```

\setlayoutscale{1}
\drawparameterstrue
\drawheading{}
Figure 2: Displayed sectional headings

\begin{figure}
\setlayoutscale{1}
\drawparameterstrue

```

\section*{\runinheadtrue}
\drawheading\{\}
\caption\{Runin sectional headings\} \label\{fig:runsechead\}
\end\{figure\} }
The package also lets you try experimenting with different layout parameters and draw diagrams showing what the results would be in a document.

The version of layouts used for this manual is v2.4 dated 2001/04/30. Earlier versions will fail when attempting to draw some figures (e.g., to draw Figure 6.2.

\section*{A. 3 MACROS}

The preamble of the manual contains many macro definitions, probably more than most documents would because:
- I am having to typeset many LaTeX commands, which require some sort of special processing;
- I have tried to minimize the number of external packages needed to LaTeX this manual satisfactorily, and so have copied various macros from elsewhere;
- I wanted to do some automatic indexing;
- I wanted to set off the syntax specifications and the code examples from the main text.
To get the whole glory you will have to read the preamble, but I show a few of the macros below as they may be of more general interest.
```

\pstyle{\langlestyle\rangle}

```

The command \(\backslash p s t y l e\) prints its argument in the slanted font used for pagestyles and also makes a pagestyle entry in the index. Its definition is
\newcommand\{\pstyle\}[1]\{\textsl\{\#1\}\index\{\#1pages@\textsl\{\#1\} (pagestyle)\}\}
The first part prints the argument in the text and the second adds an entry to the .idx file. The fragment \#1pages is what the makeindex program will use for sorting entries, and the fragment following the @ character is what will be put into the index.

\section*{\cstyle\{〈style \(\rangle\}\)}

The command \cstyle prints its argument in the slanted font used for chapterstyles and also makes a chapterstyle entry in the index. Its definition is
\newcommand\{\cstyle\}[1]\{\textsl\{\#1\}\index\{\#1chaps@\textsl\{\#1\} (chapterstyle)\}\} which is almost identical to \pstyle.

There is both a companion chapterstyle and a companion pagestyle. The strings used for sorting the index entries for these are companionchaps and companionpages respectively, so the chapterstyle will come before the pagestyle in the index. The reason for distinguishing between the string used for sorting and the actual entry is partly to distinguish between different kinds of entries for a single name and partly to avoid any formatting commands messing up the sorted order.
\[
\backslash \text { begin }\{\text { syntax }\} \text { syntax } \backslash \text { end }\{\text { syntax }\}
\]

The syntax environment is for specifying command and environment syntax. Its definition is
```

}% {


```

It is implemented in terms of the tabular environment, which forms a box that will not be broken across a pagebreak. The box frame is just the normal horizontal and vertical lines

Packages and macros that you can use with a tabular. The width is fixed at \(90 \%\) of the text width. As it is a tabular environment, each line of syntax must be ended with \(\backslash \backslash\). Note that normal LaTeX processing occurs within the syntax environment, so you can effectively put what you like inside it.
```

$$
\begin{lcode} LaTeX code \end{lcode}
$$

```

I use the lcode environment for showing examples of LaTeX code. It is a special kind of verbatim environment where the font size is \small but the normal \baselineskip is used, and each line is indented. It is defined with the help of the verbatim package.

At the bottom the environment is defined in terms of a list, although that is not obvious from the code; for details see the verbatim package documentation SRR99. I wanted the environment to be a tight list so started off by defining some two helper items.
```

$\%$ \@zeroseps sets list before/after skips to minimum values
\newcommand\{\@zeroseps\}\{\setlength\{\topsep\}\{\z@\}
\setlength $\{\backslash$ partopsep $\}\{\backslash z @\}$
\setlength\{\parskip\}\{\z@\}\}
\% \gparindent is the \parindent for the body text
\newlength\{\gparindent\} \setlength\{\gparindent\}\{\parindent\}

```

The macro \@zeroseps sets the before, after and middle skips in a list to 0pt (\(\backslash z @\) is shorthand for 0pt). The value of \parindent is saved in \gparindent, because this will be the line indentation in the environment.
```

% Now we can do the new lcode verbatim environment.
% This has no extra before/after spacing.
\newenvironment{lcode}{\@zeroseps

\small\setlength{\baselineskip}{\onelineskip}\verbatim}%
{\endverbatim
\vspace{-\baselineskip}\noindent
}

```

The fragment \small\setlength\{\baselineskip\}\{\onelineskip\} sets the font size to be \small, which has a smaller \baselineskip than the normal font, but this is corrected for by changing the local \baselineskip to the normal skip, \onelineskip. At the end of the environment there is a negative space of one line to compensate for a one line space that LaTeX inserts.

The two versals in 2.3 were typeset with macros defined in the preamble. The first and poorer of the two used the \versal macro. The second used the \drop macro which was written for LaTeX v2.09 by David Cantor and Dominik Wujastyk in 1998. Now, if you want to try your hand at this sort of thing there are some more packages on CTAN. I have found that the lettrine package Fli98 serves my needs.

Macros

\section*{Bibliography}

CTAN is the Comprehensive TeX Archive Network. Information on how to access CTAN is available at http://www.tug.org.
[Ado01] How to Create Adobe PDF eBooks. Adobe Systems Inc., 2001. (Available from http://www.adobe.com/epaper/tips/acr5ebook/pdfs/eBook.pdf)
[Ars99] Donald Arseneau. The url package. February, 1999. (Available from CTAN as /macros/latex/contrib/misc/url.sty)
[Ars01a] Donald Arseneau. The titleref package. April, 2001. (Available from CTAN as /macros/latex/contrib/misc/titleref.sty)
[Ars01b] Donald Arseneau. The framed package. July, 2001. (Available from CTAN as /macros/latex/contrib/misc/framed.sty)
[Ars01b] Donald Arseneau. The chapterbib package. September, 2001. (Available from CTAN as /macros/latex/contrib/cite/chapterbib.sty)
[Bar92] Helen Barolini. Aldus and his Dream Book. Italica Press (ISBN 0-934977-22-4), 1992.
[BDG89] Charles Bigelow, Paul Hayden Duensing and Linnea Gentry (Eds). Fine Print on Type. 1989. Fine Print, CA (ISBN 0-9607290-X) or Bedford Arts, CA (ISBN 0-938491-17-2).
[Boh90] Robert Bohle. Publication Design for Editors. Prentice-Hall, 1990.
[Ber02] Jens Berger. The titlesec and titletoc packages. September, 2002. (Available from CTAN in /macros/latex/contrib/titlesec)
[Bez99] Javier Bezos. The titlesec and titletoc packages. February, 1999. (Available from CTAN in/macros/latex/contrib/titlesec)
[Bra94] Johannes Braams et al. Standard LaTeX2e packages makeidx and showidx. November, 1994. (Available from CTAN as /macros/latex/base/makeindx. dtx(ins))
[Bra97] Johannes Braams. The alltt environment. June, 1997. (Available from CTAN as /macros/latex/base/alltt.dtx(ins))
[Bri92] Robert Bringhurst. The Elements of Typographic Style. Hartley \& Marks (ISBN 0-88179-033-8), 1992.
[Bur59] C. L. Burt. A Psychological Study of Typography. Cambridge University Press, 1959.
[Car94] David Carlisle. The delarray package. March, 1994. (Available from CTAN in /macros/latex/required/tools)
[Car95] David Carlisle. The afterpage package. October, 1995. (Available from CTAN in /macros/latex/required/tools)
[Car98a] David Carlisle. The color package. May, 1998. (Available from CTAN in /macros/latex/required/tools)
[Car98b] David Carlisle. The longtable package. May, 1998. (Available from CTAN in /macros/latex/required/tools)
[Car98c] David Carlisle. The enumerate package. August, 1998. (Available from CTAN in /macros/latex/required/tools)
[Car98d] David Carlisle. The remreset package. August, 1998. (Available from CTAN in /macros/latex/contrib/carlisle)
[Car99a] David Carlisle. The tabularx package. January, 1999. (Available from CTAN in /macros/latex/required/tools)
[Car01] David Carlisle. The dcolumn package. May, 2001. (Available from CTAN in /macros/latex/required/tools)
[CR99] David Carlisle and Sebastian Rahtz. The graphicx package. February, 1999. (Available from CTAN in/macros/latex/required/graphics)
[CB99] Warren Chappell and Robert Bringhurst. A Short History of the Printed Word. Hartley \& Marks, 1999. ISBN 0-88179-154-7.
[CH88] Pehong Chen and Michael A. Harrison. 'Index Preparation and Processing'. Software: Practice and Experience, 19:8, pp. 897-915, September, 1988. (Available from CTAN in/indexing/makeindex/paper)
[Chi93] The Chicago Manual of Style, Fourteenth Edition. The University of Chicago (ISBN 0-226-10389-7) 1993.
[Coc02] Steven Douglas Cochran. The subfigure package. March, 2002. (Available from CTAN in/macros/latex/contrib/subfigure)
[CG96] John H. Conway and Richard K. Guy. The Book of Numbers. Copernicus, Springer-Verlag (ISBN 0-387-97993-X), 1996.
[Cra92] James Craig. Designing with Type: A Basic Course in Typography. WatsonGuptill, NY, 1992.
[Dal99] Patrick W. Daly. Natural Sciences Citations and References. May, 1999. (Available from CTAN in /macros/latex/contrib/natbib)
[Deg92] Asaf Degani. On the Typography of Flight-Deck Documentation. NASA Contractor Report \# 177605. December, 1992. (Available from http://members. aol.com/willadams/typgrphy.htm\#NASA)
[Dow96] Geoffrey Dowding. Finer Points in the Spacing \(\mathcal{G}\) Arrangement of Type. Hartley \& Marks (ISBN 0-88179-119-9), 1996.
[Dow98] Geoffrey Dowding. An Introduction to the History of Printing Types. The British Library and Oak Knoll Press (ISBN 0-7123-4563-9 UK, 1-884718-44-2 uSA), 1998.
[Dow00] Michael J. Downes. The patchcmd package. July, 2000. (Available from CTAN in /macros/latex/contrib/patchcmd)
[Eij92] Victor Eijkhout. TeX by Topic. Addison-Wesley, 1992. ISBN 0-201-56882-9. (Available from http://www.eijkhout.net/tbt/).
[Fai00] Robin Fairbairns. footmisc - a portmanteau package for customising footnotes in LaTeX2e. March, 2000. (Available from CTAN in/macros/latex/contrib/ footmisc)
[Fai98] Robin Fairbairns. The moreverb package. December, 1998. (Available from CTAN in/macros/latex/contrib/moreverb)
[FAQ] Robin Fairbairns. The UK TeX FAQ. (Available from CTAN in /help/ uk-tex-faq)
[Fea03] Simon Fear. Publication quality tables in LaTeX. March, 2003. (Available from CTAN in /macros/latex/contrib/booktabs)
[Fli98] Daniel Flipo. Typesetting 'lettrines' in LaTeX2e documents. March, 1998. (Available from CTAN in/macros/latex/contrib/lettrine)
[Fra00] Melchior Franz. The crop package. February, 2000. (Available from CTAN in /macros/latex/contrib/crop)
[FOS98] Friedrich Friedl, Nicolaus Ott and Bernard Stein. Typography: An Encyclopedic Survey of Type Designs and Techniques throughout History. Black Dog \& Leventhal Publishers Inc. (ISBN 1-57912-023-7), 1998.
[Gar66] Martin Gardner. More Mathematical Puzzles and Diversions. Penguin Books (ISBN 0-14-020748-1), 1966.
[GMS94] Michel Goossens, Frank Mittelbach and Alexander Samarin. The LaTeX Companion. Addison-Wesley Publishing Company (ISBN 0-201-54199-8), 1994.
[GRM97] Michel Goossens, Sebastian Rahtz and Frank Mittelbach. The LaTeX Graphics Companion: Illustrating Documents with TeX and PostScript. Addison-Wesley Publishing Company (ISBN 0-201-85469-4), 1997.
[GR99] Michel Goossens and Sebastian Rahtz (with Eitan Gurari, Ross Moore and Robert Sutor). The LaTeX Web Companion: Integrating TeX, HTML and XML. Addison-Wesley Publishing Company (ISBN 0-201-43311-7), 1999.
[Gou87] J. D. Gould et al. 'Reading from CRT displays can be as fast as reading from paper'. Human Factors, pp 497-517, 29:5, 1987.
[HR83] J. Hartley and D. Rooum. 'Sir Cyril Burt and typography'. British Journal of Psychology, pp 203-212, 74:2, 1983.
[HM01] Steven Heller and Philip B. Maggs (Eds). Texts on Type: Critical Writings on Typography. Allworth Press (ISBN 1-58115-082-2), 2001.
[Hoe98] Alan Hoenig. TeX Unbound: LaTeX and TeX strategies for fonts, graphics, and more. Oxford University Press (ISBN 0-19-509686-X), 1998.
[HK75] J. K. Hvistendahl and M. R. Kahl. 'Roman vs. sans serif body type: Readability and reader prference'. AANPA News Research Bulletin, pp 3-11, 17 Jan., 1975.
[Jon95] David M. Jones. A new implementation of LaTeX's indexing commands. September, 1995. (Available from CTAN in /macros/latex/contrib/camel)
[Knu84] Donald E. Knuth. The TeXbook. Addison-Wesley Publishing Company (ISBN 0-201-13448-9), 1984.
[Lam94] Leslie Lamport. LaTeX: A Document Preparation System. Addison-Wesley Publishing Company (ISBN 0-201-52983-1), 1994.
[LMB99] Leslie Lamport, Frank Mittelbach and Johannes Braams. Standard document classes for LaTeX version 2e. September, 1999. (Available from CTAN as /macros/latex/base/classes.dtx)
[Law90] Alexander Lawson. Anatomy of a Typeface. David R. Godine (ISBN 0-87923-333-8), 1990.
[Leu92] Mary-Claire van Leunen. A Handbook for Scholars. Oxford University Press (ISBN 0-19-506954-4), 1992.
[Lon91] F. W. Long. multind. August, 1991. (Available from CTAN as /macros/ latex209/contrib/misc/multind.sty)
[McD98] Rowland McDonnell. The sectsty package. November, 1998. (Available from CTAN in/macros/latex/contrib/secsty)
[McL75] Ruari McLean. Jan Tschichold: Typographer. David R. Godine (ISBN 0-87923-841-0), 1975.
[McL80] Ruari McLean. The Thames \& Hudson Manual of Typography. Thames \& Hudson (ISBN 0-500-68022-1), 1980.
[McL95] Ruari McLean (Ed). Typographers on Type. W. W. Norton \& Co. (ISBN 0-393-70201-4), 1995.
[Mit95] Frank Mittelbach. The doc and shortvrb packages. May, 1995. (Available from CTAN in /macros/latex/base
[Mit95] Frank Mittelbach. The doc and shortvrb packages. May, 1995. (Available from CTAN in /macros/latex/base)
[Mit98] Frank Mittelbach. An environment for multicolumn output. January, 1998. (Available from CTAN in/macros/latex/required/tools)
[MC98] Frank Mittelbach and David Carlisle. A new implementation of LaTeX's tabular and array environment. May, 1998. (Available from CTAN in/macros/latex/ required/tools)
[MC00] Frank Mittelbach and David Carlisle. The fixltx2e package. September, 2000. (Available from CTAN in/macros/latex/base)
[Mor99] Stanley Morison. A Tally of Types. David R. Godine (ISBN 1-56792-004-7), 1999.
[NG98] Rolf Niespraschk and Hubert Gäßlein. The sidecap package. June, 1998. (Available from CTAN in /macros/latex/contrib/sidecap)
[Oet] Tobias Oetiker. The Not So Short Introduction to LaTeX2e. (Available from CTAN in /info/lshort/english)
[Oos96] Piet van Oostrum. Page Layout in LaTeX. June, 1996. (Available from CTAN in /macros/latex/contrib/fancyhdr)
[Pak01] Scott Pakin. The Comprehensive LaTeX Symbol List. July, 2001. (Available from CTAN in /info/symbols/comprehensive)
[Pug02] Diego Puga. The Pazo Math fonts for mathematical typesetting with the Palatino fonts. May, 2002. (Available from CTAN in /fonts/mathpazo)
[Rahtz01] Sebastian Rahtz. Section name references in LaTeX. January, 2001. (Available from CTAN in /macros/latex/contrib/hyperref)
[Rahtz02] Sebastian Rahtz. Hypertext marks in LaTeX. May, 2002. (Available from CTAN in /macros/latex/contrib/hyperref)
[Rec97] Keith Reckdahl. Using Imported Graphics in LaTeX2e. December, 1997. (Available from CTAN as /info/epspatex.ps or /info/epslatex.pdf)
[Reh72] Rolf Rehe. 'Type and how to make it most legible'. Design Research International, 1972.
[RAE71] D. O. Robinson, M. Abbamonte and S. H. Evans. 'Why serifs are important: The perception of small print'. Visible Language, pp 353-359, 4, 1971.
[Rog43] Bruce Rogers. Paragraphs on Printing. William E. Rudge's Sons, Inc. (no ISBN), 1943. (Reissued by Dover, 1979, ISBN 0-486-23817-2)
[Rog49] Bruce Rogers. Centaur Types. October House (no ISBN), 1949.
[SW94] Douglas Schenck and Peter Wilson. Information Modeling the EXPRESS Way. Oxford University Press (ISBN 0-19-508714-3), 1994.
[SRR99] Rainer Schöpf, Bernd Raichle and Chris Rowley. A New Implementation of LaTeX's verbatim and verbatim* Environments. December, 1999. (Available from CTAN in /macros/latex/required/tools)
[Sch97] Karen A. Schriver. Dynamics in Document Design. Wiley \& Sons, 1997.
[Thi99] Christina Thiele. 'The Treasure Chest: Package tours from CTAN', TUGboat, vol. 20, no. 1, pp 53-58, March 1999.
[Tin63] Miles A. Tinker. Legibility of Print. Books on Demand (University Microfilms International), 1963.
[Tsc91] Jan Tschichold. The Form of the Book. Lund Humphries (ISBN 0-85331-6236), 1991.
[Ume99] Hideo Umeki. The geometry package. November, 1999. (Available from CTAN in /macros/latex/contrib/geometry)
[Whe95] Colin Wheildon. Type \(\S\) Layout. Strathmore Press (ISBN 0-9624891-5-8), 1995.
[Wil93] Adrian Wilson. The Design of Books. Chronicle Books (ISBN 0-8118-0304-X), 1993.
[Wil99a] Peter Wilson. The layouts package. January, 1999. (Available from CTAN in /macros/latex/contrib/layouts)
[Wil99b] Peter Wilson. The tocvsec2 package. January, 1999. (Available from CTAN in /macros/latex/contrib/tocvsec2)
[Wil00a] Peter Wilson. The epigraph package. February, 2000. (Available from CTAN in /macros/latex/contrib/epigraph)
[Wil00b] Peter Wilson. LaTeX files for typesetting ISO standards. February, 2000. (Available from CTAN in /macros/latex/contrib/isostds/iso)
[Wil00c] Peter Wilson. The nextpage package. February, 2000. (Available from CTAN as /macros/latex/contrib/misc/nextpage.sty)
[Wil00d] Peter Wilson. The needspace package. March, 2000. (Available from CTAN as /macros/latex/contrib/misc/needspace.sty)
[Wil00e] Peter Wilson. The xtab package. April 2000. (Available from CTAN in macros/latex/contrib/xtab)
[Wil01a] Peter Wilson. The abstract package. February, 2001. (Available from CTAN in /macros/latex/contrib/abstract)
[Wil01b] Peter Wilson. The chngpage package. February, 2001. (Available from CTAN as /macros/latex/contrib/misc/chngpage.sty)
[Wil01c] Peter Wilson. The appendix package. March, 2001. (Available from CTAN in /macros/latex/contrib/appendix)
[Wil01d] Peter Wilson. The ccaption package. March, 2001. (Available from CTAN in /macros/latex/contrib/ccaption)
[Wil01e] Peter Wilson. The chngcntr package. April, 2001. (Available from CTAN as /macros/latex/contrib/misc/chngcntr.sty)
[Wil01f] Peter Wilson. The hanging package. March, 2001. (Available from CTAN in /macros/latex/contrib/hanging)
[Wil01g] Peter Wilson. The titling package. March, 2001. (Available from CTAN in /macros/latex/contrib/titling)
[Wil01h] Peter Wilson. The tocbibind package. April, 2001. (Available from CTAN in /macros/latex/contrib/tocbibind)
[Wil01i] Peter Wilson. The tocloft package. April, 2001. (Available from CTAN in /macros/latex/contrib/tocloft)
[Wil01j] Peter Wilson. The LaTeX memoir class for configurable book typesetting: Source code. July, 2001. (Available from CTAN in /macros/latex/contrib/memoir)
[Wil01k] Peter Wilson. Typesetting simple verse with LaTeX July, 2001. (Available from CTAN in/macros/latex/contrib/verse)
[Wil011] Peter Wilson. Printing booklets with LaTeX August, 2001. (Available from CTAN in /macros/latex/contrib/booklet
[Wil03] Peter Wilson. ledmac: A presumptuous attaempt to port EDMAC and TABMAC to LaTeX November, 2003. (Available from CTAN in/macros/latex/contrib/ ledmac)
[Wil??] Peter Wilson. A Rumour of Humour: A scientist's commonplace book. To be published?
[Zac69] B. Zachrissom. Studies in the Legibility of Printed Text. Almqvist \& Wiksell, Stockholm, 1969.
[Zap00] Hermann Zapf. The Fine Art of Letters. The Grolier Club (ISBN 0-910672-35-0), 2000.

\section*{Index}

The first page number is usually, but not always, the primary reference to the indexed topic.
```

\!,228
\,,228
\:,228
\;,228
\@caption, 142 144
\@captype, }14
\@dblfpbot (length),152
\@dblfpsep (length), 152
\@dblfptop (length),152
\@dotsep, 106, 107, 109, 113
\@dottedtocline, 107, 108
\@fnsymbol,178
\@fpbot (length), 152, 153
\@fpsep (length), 152, 153
\@fptop (length), 152,153
\@hangfrom, 90, 96, 237
\@makecaption, 143 145
\@makefnmark, 175
\@pnumwidth, 106, 107, 111, 121,122
\@seccntformat, 90
\@startsection, 118
\@thefnmark, 175
\@tocrmarg, 106, 107, 111, 121, 122
\@zeroseps,245

$$
, 155,161
\\, 79, 131, 132, 155, 164, 167, 195,198, 245
\\*, 131, 197, 198
\\>, 198,199
\\!,198
$$, 155,161

10pt (option),46,47
11pt (option), 46
12pt (option), 46,48
14pt (option), 46 186

```
\(16 \mathrm{mo}, 7\)
17pt (option), xxiii 46,186
\(32 \mathrm{mo}, 7\)
4to, 7
\(64 \mathrm{mo}, 7\)
8vo, 7
9pt (option), 46
a3paper (option), 45
a4paper (option), 45
a5paper (option), 45
a6paper (option), 45
abbreviation, 633
\abovecaptionskip (length), 134, 143
\abslabeldelim, 75
\absleftindent (length), 75
\absnamepos, 75
\absparindent (length), 75
\absparsep (length), 75
\absrightindent (length), 75
\abstitleskip (length), 75
abstract, 67, 69, 73-75
abstract (environment), xi, 67, 73,75
abstract (package), xvii 73
\abstractcol, 74
\abstractintoc, 74
\abstractname, 73,75, 231
\abstractnamefont, 74
\abstractnum, 74
\abstractrunin, 74, 75
\abstracttextfont, 74
acronym, 35
\addappheadtotoc, 81
\addcontentsline, 105, 106, 108, 120, 134
\added, 216
\addlinespace, 164
\addtocontents, 108, 120
\addtocounter, 92
\addtodef, 64, 117, 220
\addtodef*, 220
\addtoiargdef, 220
\addtoiargdef*, 220
\addtolength, 60, 75, 83, 85, 101, 198, 200
\addtostream, 212
\addvspace, 85
adjustwidth (environment), 98, 99, 101
adjustwidth* (environment), 69, 98
\afterchapskip (length), 85
\afterchapternum, 86, 91
\afterchaptertitle, 110, 235
\afterepigraphskip (length), 191
\afterpage, 119
afterpage (package), 119, 136
\afterpartskip, 82
\afterpoemtitleskip (length), 200
afterword, 6
\afterZtitle, 110
aglossary (environment), 103
\aliaspagestyle, 185
alltt (environment), 196
alltt (package), 196, 243
Alph, 92
alph, 92
\alsoname, 125,126
altverse (environment), 199
\and, 70
\andnext, 70
appendices (environment), 81
appendix, 6, 81, 83, 109, 115, 116
\appendix, 81
\appendixname, 81, 231
\appendixpage, 81, 83
\appendixpage*, 81
\appendixpagename, 81,231
\appendixtocname, 81, 231
caption, 139
arabic, 92
array (environment), 155, 157, 160, 161, 167,
169, 171
array (package), 155
\arraybackslash, 167
\arraytostring, 227
article (chapterstyle), 85
article (class), xvii, \(47 \mid, 73,85\)
article (option), xvii, 47, 79
\author, 67, 68, 70
\autocols, 171
\autorows, 170, 171
aux (file), 127
b3paper (option), 45
b4paper (option), 45
b5paper (option), 45
b6paper (option), 45
back matter, 3, 6
\backmatter, 77, 79
\baselineskip (length), 83, 85, 96, 143, 192, 228, 245
\beforechapskip (length), 85
\beforeepigraphskip (length), 191
\beforepartskip, 82
\beforepoemtitleskip (length), 200
\belowcaptionskip (length), 134, 143
\(\backslash b f\), xiii
\bfseries, 83, 85, 89
\bibindent, 47
\bibintoc, 122
\bibitem, 122
\bibitemsep (length), 124
bibliography, 4, 6, 47, 116, 119, 122, 122124, 194
\biblistextra, 124
\bibname, 122, 231
\bibsection, 123
\bibsep (length), 124
\bicaption, 137, 138
\bicontcaption, 138
big point, xxviii
\bionenumcaption, 137
\bitwonumcaption, 137
blockdescription (environment), xxiii
book (class), xiii, \(73,84,194\)
booktabs (package), 155, 163
\bottomfraction, 152 154
bottomnumber (counter), 152
\bottomrule, 164
\bottomsectionskip (length), 79
boxedverbatim (environment), 210, 211
\boxedverbatiminput, 213
bp, xxviii
bringhurst (package), 240
\bringpicl, 238
\bringpicr, 238
broadside, 7
\bvbox, 210, 211
\bvnumbersinside, 211
\bvnumbersoutside, 211
\bvsides, 210,211
\bvtopandtail, 210, 211
\bvtopofpage, 211
\calccentering, 69, 99
\cancelthanksrule, 73
caption, 12, 39, 77, 122, 129-146
anonymous, 133-135
bilingual, 136-138
continuation, 132-133
fixed, 135-136
footnote, 145-146
LaTeX methods, 142-145
style, 129-132
subcaption, 138-142
\caption, 106, 120, 122, 132, 139, 142, 145, 169, 230, 239
\captiondelim, 129
\captionnamefont, 129
\captionstyle, 130
\captiontitlefont, 130
\captionwidth, 130
\cardinal, 223, 224
\cases, 161
casting off, 7
cc, xxviii
ccaption (package), 129
\cdot, 157
center (environment), \(75,97,99,103\)
\centering, 97, 130, 140, 143, 167
\centerlastline, 130, 132, 140
centimetre, Xxviii
\cftaddnumtitleline, 121, 122
\cftaddtitleline, 121, 122
\cftaftersnumb, 113
\cftbeforeXskip (length), 112
\cftchapterbreak, 112
\cftdot, 111
\cftdotsep, 111, 113
\cftlocalchange, 121
\cftnodots, 111, 113
\cftpagenumbersoff, 115,119
\cftpagenumberson, 115
\cftparfillskip, 115
\cftparskip (length), 112
\cftsetindents, 114,118
\cftXafterpnum, 114
\cftXaftersnum, 113, 114
\cftXaftersnumb, 113, 114
\cftXdotsep, 113
\cftXfont, 113,114
\cftXindent (length), 112
\cftXleader, 113115
\cftXnumwidth (length), 112, 113
\cftXpagefont, 113
\cftXpresnum, 113
\changecaptionwidth, 130
\changed, 216
\changemarksfalse, 216
\changemarkstrue, 216
\chapnamefont, 85, 91
\chapnumfont, 85, 91
chapter, 4, 6, 7, 14, 29, 31, 32, 46, 47, 77, 78, 81, 107
heading, see heading
number, 6, 31, 78, 81
precis, 120-121
style, see chapterstyle
\chapter, xxiii, 47, 78, 81, 82, 85, 107, 109 . 112, 113, 117, 121, 184, 192, 230
chapter (pagestyle), 79, 83, 111, 184
\chapter*, xxiii 78, 192
chapterbib (package), xxv 123
\chaptermark, 187, 201
\chaptername, 81, 85, 231
\chapternamenum, 85 91
\chapternumberline, 113
\chapterprecis, 120,215
\chapterprecishere, 120,121
\chapterprecistoc, 120, 121
\chapterrefname, 229, 232
chapterstyle, xiv, 86-88, 91
article, 85
companion, 84, 183, 244
default, 84
demo, 85,195
fred, 84
hangnum, 84, 129
section, 84, 86, 105, 243
veelo, 87, 215
\chapterstyle, 84
\chaptitlefont, 85, 91
\checkandfixthelayout, 62
\checkarrayindex, 227
\checkifinteger, 227
\checkoddpage, 221, 222
chngentr (package), 218
chngpage (package), 98, 221
cicero, xxviii
CIP, 5
\citeindexfile, 126
\citeindextrue, 126
class, xiii, xiv
article, xvii, 47, 73,85
book, xiii \(73,84,194\)
iso, 216
memoir, xiii, Xiv, Xvii, xix, xxi, xxiii, \begin{tabular}{lllllll}
xxv & 45 & 62, & 81, & 105, & 107, & 118 \\
\hline
\end{tabular} \(\mathbf{1 9 7}\), 210, 216, 230, 243
report, xiii, 68, 73, 194
\cleardoublepage, 136, 184, 193, 222
cleared (pagestyle), 184
\clearforchapter, 84
\clearpage, 84, 136, 222
\cleartoevenpage, 136, 193, 222, 223
\cleartooddpage, 223
\cleartorecto, 84,223
\cleartoverso, 84, 223
\cline, 164, 165
\closeinputstream, 212
\closeoutputstream, 212
cm, xxviii
\cmidrule, 164,165
\cmidrulesep, 165
\cmidrulewidth (length), 164
colophon, 6, 99
color, 42
blind, 42
color (package), 210
column, 14, 17, 24, 28, 38
double, 21, 24, 46, 59, 67, 73, 125, 149 . 152, 153, 188, 243
multiple, 10, 24, 38, 39, 149
single, 46, 67, 73, 74, 149
\columnsep (length), 58, 59, 63
\columnseprule (length), 59, 63
\columnwidth, 174
\columseprule (length), 58
comment (environment), 207, 208
\commentsoff, 207
\commentson, 207
companion (chapterstyle), 84, 183, 244
companion (pagestyle), 183, 184, 187, 189. 244
\contcaption, 132
\contentsline, 106, 108, 121
\contentsname, 109, 110,231
\continuousmarks, 71
contributor, 6
\contsubbottom, 141
\contsubcaption, 139
\contsubtop, 141
copyfitting, 24
\copypagestyle, 185
copyright, 5,32
copyright page, 3, 5
counter,
bottomnumber, 152
dbltopnumber, 152
footnote, 71,173
lastpage, 218
lastsheet, 218
page, 92
poemline, 200
secnumdepth, 78, 82
tocdepth, 105, 117, 146
topnumber, 152
totalnumber, 152
Zdepth, 146
\counterwithin, 218, 219
\counterwithin*, 218
\counterwithout, 219
\counterwithout*, 219
\cplabel, 222
\Cref, 229
\cstyle, 244
ctabular (environment), 169
CTT, 87
\currenttitle, 230, 231
dash, 35
\date, 67, 68, 70
\dblfloatpagefraction, 152
\dblfloatsep (length), 152
\dbltextfloatsep (length), 152
\dbltopfraction, 152
dbltopnumber (counter), 152
dcolumn (package), 155
dd, xxviii
default (chapterstyle), 84
\defaultaddspace, 164
\defaultaddspace (length), 164
\defaultlists, 101
\defaultsecnum, 90
delarray (package), 155
\deleted, 216
\DeleteShortVerb, 208
demo (chapterstyle), 85, 195
description (environment), xxiii 100,101
\descriptionlabel, 100
didot point, xxviii
document (environment), 47
\documentclass, 45, 47, 55
draft (option), 46, 215, 216
\drop, 246
\dropchapter, 193
\droptitle (length), 68
Ebook, see electronic books
ebook (option), 45,48
electronic books, 41-42
ellipses, 35
em, xxviii
\em, xiii
emphasis, 28, 37, 38
empty (pagestyle), 69, 111, 184, 185
\emptythanks, 70
en, xxviii
\endinput, 240
centerlastline, 130
enumerate (environment), 100, 101
enumerate (package), 100
environment,
```

abstract, xi, 67, 73,75
adjustwidth, 98, 99, 101
adjustwidth*, 69, 98
aglossary,103

```
alltt, 196
altverse, 199
appendices, 81
array, 155, 157, 160, 161, 167, 169, 171
blockdescription, xxiii
boxedverbatim, 210, 211
center, 75, 97, 99, 103
comment, 207, 208
ctabular, 169
description, Xxiii, 100,101
document, 47
enumerate, 100,101
epigraphs, 190
fboxverbatim, 210
flushleft, 75, 97
flushright, 75, 97
framed, 209, 210
hangparas, 96
itemize, 100, 101
lcode, 245
leftbar, 209
list, 100, 101, 245
minipage, 210,238
onecolabstract, 74
patverse, 199, 200, 226
patverse*, 199, 200
quotation, 98, 101
quote, 98, 101, 121
shaded, 209, 210
subappendices, 81
syntax, 245
table, 169
tabular, 155, 157, 160, 165, 167,169, 171, 245
tabular*, 155, 165167
tabularx, 155, 165168
thebibliography, 122,123
theindex, 125
titlepage, 69
titlingpage, 69, 73
trivlist, 103
verbatim, 196, 208, 209, 245
verbatim*, 208
verse, Xvii 195 199, 211
writeverbatim, 212
epigraph, 4, 84, 183, 189-194
\epigraph, 190,192
epigraph (package), 189,194
epigraph (pagestyle), 194
\epigraphfontsize, 191
\epigraphforheader, 193
\epigraphhead, 192, 193
\epigraphpicture, 193
\epigraphposition, 191
\epigraphrule (length), 191
epigraphs (environment), 190
\epigraphsourceposition, 191
\epigraphtextposition, 190, 191
\epigraphwidth (length), 190, 192
epilogue, 6
Euclid, 12
\evensidemargin (length), 63
ex, xxviii
executivepaper (option), 45
\ext@type, 143
\extracolsep, 160
\extrarowheight (length), 171
\extratabsurround, 172
\extratabsurround (length), 172
\fancybreak, 79, 80
\fancybreak*,79
fancyhdr (package), 183
\fbox, 209
fboxverbatim (environment), 210
\fcardinal, 223, 224
\feetabovefloat, 176
\feetbelowfloat, 176
Fibonacci series, 13
figure, see also float, 4, 47, 98, 107, 114, 118,
\(121,122,129,134,136,139,143\),
\begin{tabular}{|c|c|c|c|}
\hline 144, & 146 & 148, & 188, \\
193, & 233, & 239 \\
\hline
\end{tabular}
list of, see LoF
reference, 229
sub-, 118, 138, 139
\figurename, \(144,145,231\)
\figurerefname, 229, 231
file,
aux, 127
idx, 124127
ind, \(124,125,127\)
toc, 121
final (option), 46, 215
\firmlist, 101
\firsthline, 172
\fixdvipslayout, 63, 64
fixltx2e (package), 149, 188, 243
\fixpdflayout,62,63
flafter (package), 150
\flagverse, 200
\flegtoctype, 135
\flegtype, 135
fleqn (option), 47
float, 47, 77, 129, 131, 136, 138, 141, 143,
145, 146, 173, 222, 239, 243
multiple, 148-149
new, 146-147
page, 188-189
placement, 149-154
floatcomp (pagestyle), 189
\floatpagefraction, 152 154
\floatsep (length), 152| 153
\flushbottom, 47, 48, 79, 222
flushleft, 97
flushleft (environment), 75,97
flushright, 97
flushright (environment), 75,97
\fnsymbol, 178
\fnum@figure, 144, 145
\fnum@type, 143, 144
\fnumbersep, 223, 224
folio, xxvii, 3, 5, 7, 14, 16, 31, 32, 42, 59, 77. [92, \(119,120,184,188,233,237\)
font, xxvii, xxviii, 6, 9
change, 3. 8,37
family, xxvii
measuring, 24
sans, 27-29
seriffed, 27-29
\fontdimen, 55
footer, \(16,18,31,32,42,49,59,183,189\). 215, 233
\footfootmark, 175
\footfudgefiddle, 178
\footmarksep (length), 175, 176, 178
\footmarkstyle, 175
\footmarkwidth (length), \(175,176,178\)
footmisc (package), 175, 176
footnote, 14, 31, 37, 71, 73, 92,174
in caption, 145-146
in heading, 92
in title, see thanks
mark, 37, 37, 71, 92, 146
reference, 173
\footnote, \(92,145,173,175,177,179\)
footnote (counter), 71, 173
\footnotemark, 71, 145, 173
\footnoterule, 73, 174, 178
\footnotesep (length), 174
\footnotesize, 72, 174, 175, 191
\footnotetext, 145, 146, 173
\footparindent (length), 175
\footref, 173
\footruleheight, 186
\footruleskip, 186
\footskip (length), 59, 62, 64, 234
\foottextfont, 175
\fordinal, 224
\foremargin (length), 56, 60, 63, 182
foreword, 4
\frac, 226
\frameasnormalfalse, 210
\frameasnormaltrue, 210
framed (environment), 209, 210
framed (package), 209,210
\(\backslash\) FrameHeightAdjust, 209,210
\(\backslash\) FrameRule (length), 209||210
\(\backslash\) FrameSep (length), 209, 210
fred (chapterstyle), 84
\(\backslash\) freetabcaption, 169
\fref, 229
front matter, 3, 6
frontispiece, 122
\frontmatter, 74, 77
\frontmatter*, 77
geometry (package), 49
\getarrayelement, 227
glossary, 6
golden section, 12-13, 21, 64
\gparindent (length), 245
graphicx (package), 87, 243
half title page, 3, 67
\hangcaption, 130
\hangfrom, 96
hanging (package), 96
hangnum (chapterstyle), 84,129
\hangpara, 96
hangparas (environment), 96
\hangsecnum, 90, 129
\hangsubcaption, 140
\headdrop (length), 59, 62, 64
header, 16, 32, 42, 49, 59, 64, 78, 92, 183 189, 192, 215, 233, 237
\headheight (length), 59, 62|| 64
heading, 4, 9, 23, 24, 26, 30, 32, 47, 77, 109 . 150, 190
abstract, 73
chapter, 47, 83-85, 91, 116, 120, 192. 193
default, 95
part, 6, 47, 82-83
sections, 47, 88-90
headings (pagestyle), 45,184
\headnamereffalse, 230
\headnamereftrue, 230
\headsep (length), 59, 63, 64,237
\headskip, 62
\headwidth (length), 185
\(\backslash\) heavyrulewidth (length), 164
\hfil, 113, 115
\hfill, 115,132
\hline, 164, 165,172
\(\backslash\) Huge, 83 , 85
\huge, 83, 85
hyperref (package), 106, 113, 125, 139, 229
hyphenation, 38
sidebarvsep (length), 180
idx (file), \(124-127\)
\idxmark, 187
\ifbounderror, 227
\ifdraftdoc, 215
\ifinteger, 227
\ifoddpage, 221
\ifonlyfloats, 188
\ifpdf, 228
\ifsamename, 221
\IfStreamOpen, 212
\iiirdstring, 224
\iindstring, 224
illustration, see also float, figure, 4, 7, 8, 12, \(19,24,39,42,84,92,119,122,135\), 143, 148, 149
in, xxviii
inch, xxviii
\include, 127
ind (file), \(124,125,127\)
\indentcaption, 130
\indentpattern, 199, 200, 204
index, 4, 6, 38, 105, 116, 119, 122, 125, 124127, 187, 188, 194, 197, 244
\index, 125, 126
index (package), 124, 197
index (pagestyle), 188
\indexcolsep (length), 125
indexing, 188
\indexintoc, 125
\indexname, 125,231
\indexrule (length), 125
\input, 211,213
\insertchapterspace, 85, 117
\intextsep (length), 152
ISBN, 5
iso (class), 216
\iststring, 224
\it, xiii
\item, 100, 101, 190
itemize (environment), 100, 101
\itemsep (length), 124
\itshape, 121
jurabib (package), 123, 124
\keepthetitle, 70
\killtitle, 70
kyus, xxviii
\1@chapter, 112
\1@kind, 106 107
\label, 119, 136, 139, 142, 173, 230
landscape (option), 45
\Large, 235
\large, 89, 96
\lasthline, 172
lastpage (counter), 218
lastsheet (counter), 218
layouts (package), 111, 243, 244
\lcminusname, 225
lcode (environment), 245
leading, xxvii, 24, 228
leaf, xxvii 7
ledmac (package), 176
\left, 161, 162
leftbar (environment), 209
\leftmark, 184, 187
legalpaper (option), 45
legend, 39, 39, 133
\legend, 122, 133, 135, 231, 239
length,
\@dblfpbot, 152
\@dblfpsep, 152
\@dblfptop, 152
\@fpbot, 152, 153
\@fpsep, 152,153
\@fptop, 152153
\abovecaptionskip, 134, 143
\absleftindent, 75
\absparindent, 75
\absparsep, 75
\absrightindent, 75
\abstitleskip, 75
\afterchapskip, 85
\afterepigraphskip, 191
\afterpoemtitleskip, 200
\baselineskip, 83, 85, 96, 143, 192, 228, 245
\beforechapskip, 85
\beforeepigraphskip, 191
\beforepoemtitleskip, 200
\belowcaptionskip, 134143
\bibitemsep, 124
\bibsep, 124
\bottomsectionskip, 79
\cftbeforeXskip, 112
\cftparskip, 112
\cftXindent, 112
\cftXnumwidth, 112, 113
\cmidrulewidth, 164
\columnsep, 58, 59, 63
\columnseprule, 59, 63
\columseprule, 58
\dblfloatsep, 152
\dbltextfloatsep, 152
\defaultaddspace, 164
\droptitle,68
\epigraphrule, 191
\epigraphwidth, 190, 192
\evensidemargin, 63
\extrarowheight, 171
\extratabsurround, 172
\floatsep, 152, 153
\footmarksep, 175, 176, 178
\footmarkwidth, 175, 176, 178
\footnotesep, 174
\footparindent, 175
\footskip, 59, 62| 64,234
\foremargin, 56, 60, 63, 182
\FrameRule, 209,210
\(\backslash\) FrameSep, 209, 210
\gparindent, 245
\headdrop, 59, 62 64
\headheight, 59,6264
\headsep, 59, 63, 64, 237
\headwidth, 185
\heavyrulewidth, 164
sidebarvsep, 180
\indexcolsep, 125
\indexrule, 125
\intextsep, 152
\itemsep, 124
\lightrulewidth, 164
\lowermargin, 57, 63
\lxvchars, 5455
\marginparpush, 60, 62, 63
\marginparsep, 60, 62, 63, 180, 237, 238
\marginparwidth, 60, 62, 63, 180, 237, 238
\midchapskip, 85
\midpartskip, 83
\normalrulethickness, 186
\oddsidemargin, 63
\onelineskip, 228, 234,245
\paperheight, 53, 60, 63
\paperwidth, 53, 60, 63, 99, 234
\parindent, 55, 95 97, 157, 245
\parsep, 124
\parskip, 95, 96, 112, 143
\partopsep, 103
\pfbreakskip, 80
\ragrparindent, 97
\sidebarhsep, 180
\sidebarvsep, 180
\sidebarwidth, 180
\sideparvshift, 180
\spinemargin, 56, 60, 63, 99
\stanzaskip, 198
\stockheight, 50, 60, 63
\stockwidth, 50, 60, 63, 234
\textfloatsep, 152, 153
\textheight, 55, 60, 62, 63
\textwidth, 55, 57, 60, 62, 63, 99, 186
\thanksmarksep, 72
\thanksmarkwidth, 72
\topmargin, 63
\topsep, 103
\trimedge, 53, 60, 63, 64, 234
\trimtop, 53, 60, 63, 64
\unitlength, 99, 192, 237
\uppermargin, 57, 62, 63
\verbatimindent, 209
\versewidth, 198
\vgap, 198, 199
\vindent, 198, 199
\vleftskip, 200
\vrightskip,200
\xlvchars, 54,55
leqno (option), 47
letterpaper (option), 45, 47
lettrine (package), 246
\lightrulewidth (length), 164
\linenumberfont, 200, 211
\linenumberfrequency, 200,211
list, , 100-103
new, 101-103
new list of, 116-120
of figures, see LoF
of tables, see LoT
tight, 101
list (environment), 100, 101, 245
\listanswername, 116
\listfigurename, 109, 110, 231
\listofanswers, 116
\listoffigures, 80, 81, 109, 112, 148
\listoffigures*, 80,109
\listofplates, 119
\listoftables, 80, 108, 109, 112
\listoftables*, 80,109
\listplatename, 119
\listtablename, 109, 110, 231

LoF, 4, 80, 105, 107, 110, 112, 117, 119, 121, 145, 234, 239
longtable (package), 169
\loosesubcaptions, 140
\loosesubcations, 140
LoT, 4, 80, 105, 107, 110, 112, 117, 119, 234, 239
\lowermargin, 62
\lowermargin (length), 57,63
\lxvchars (length), 54,55
main matter, 3, 5-6
\mainmatter, 77, 79, 82
\mainmatter*, 77, 82
\makeatletter, 109, 132, 144, 178, 240
\makeatother, 109, 132, 144, 178, 240
\makechapterstyle, 86
\makeevenfoot, 185
\makeevenhead, 185
\makefootmarkhook, 176
\makefootrule, 185
\makeheadposition, 186, 221
\(\backslash\) makeheadrule, 185
makeidx (package), 124
MakeIndex, 188
\makeindex, 124, 126
\MakeLowercase, 235
\makeoddfoot, 185
\makeoddhead, 185
\makepagestyle, 185, 186
\makepshook, xix
\makepsmarks, xix, 186, 187, 189
\makerunningwidth, 185
\(\backslash\) MakeShortVerb, 208
\makethanksmark, 72
\makethanksmarkhook, 72
\maketitle, 67, 70, 73, 177
\maketitlehooka, 68
\maketitlehookb, 68
\maketitlehookc, 68
\maketitlehookd, 68
margin, \(14,19,22,30,32,47,49,50,56,60\). \begin{tabular}{llllllll}
62 & 64, & 74 & 75, & 84 & 88 & 90 & 95 \\
\hline
\end{tabular} \(\mathbf{9 7}, 99\). 107, 108, 111, 112, 115, 121, 129, \(174,184,186,188,192,198,1216\), \(233,234,237\)
marginal note, see marginalia
marginalia, \(10,64,21,49,59-60,62,64,134\),
186, 233, 234,237
\(\backslash\) marginpar, 173, 179, 180
\marginparpush (length), 60, 62, 63
\marginparsep (length), 60, 62, 63, 180, 237, 238
\marginparwidth (length), 60, 62, 63, 180, 237, 238
\markboth, 184
markers, 184, 187
\markright, 184
\mathindent, 47
mathpazo (package), 55
\max, 219
\maxsecnumdepth, 82
\maxtocdepth, 105
measure, xxvii narrow, 38
\medspace, 228
memhfixc (package), 113
memoir (class), xiii, xiv, xvii, xix, xxi, xxiii, xxv, 45, 62, \(81,105,107,118,197\), 210, 216, 230, 243
\mergepagefloatstyle, 189
\midbicaption, 138
\midchapskip (length), 85
midpage (package), 136
\midpartskip (length), 83
\midrule, 164
millimetre, xxviii
minipage (environment), 210, 238
\minusname, 225
mm, xxviii
\morecmidrules, 165
moreverb (package), 207, 210
\movetoevenpage, 222
\movetooddpage, 223
ms (option), 46
\multfootsep, 176
multicol (package), 149
\multicolumn, 158, 160, 168
multind (package), 197
myheadings (pagestyle), 184
\n@me@number, 226
\namedlegend, 134,136
\namenumberand, 225
\namenumbercomma, 225
nameref (package), 229
\namerefoff, 231
\namerefon, 231
\namesubappendixfalse, 81
\namesubappendixtrue, 81
\nametest, 221
natbib (package), xxi, xxv, 123, 124, 126
\(\backslash\) Needspace, 222
\needspace, 197, 222
\Needspace*, 222
\newarray, 226,227
\newcolumntype, 157, 159, 160, 167
\newcommand, 136, 159, 219
\newcommand*, 220
\newcomment, 207
\newcounter, 117, 218
\newfixedcaption, 135,136
\newfloat, 146
\newfootnoteseries, 177, 178
\newfootseries, 177
\newinputstream, 211
\newline, 79
\newlistentry, 117,118
\newlistof, xvii, 79, 116, 117
\newloglike, 219
\newloglike*, 219
\newoutputstream, 211
\newpage, 222
\newsubfloat, 147
nextpage (package), 222
\nobibintoc, 122
\nobvbox, 210, 211
\noindent, 190
\noindexintoc, 125
\noprelistbreak, 218
\normalcaption, 130,140
\normalcaptionwidth, 130
\normalfont, 55
\normalrulethickness, 189
\normalrulethickness (length), 186
\normalsize, 96
\normalsubcaption, 140
\nthstring, 224
\numberline, 107, 121
\NumToName, 224
\numtoName, 224
\numtoname, 224, 225
octavo, 7, 8
\oddsidemargin (length), 63
oldfontcommands (option), 47
onecolabstract (environment), 74
\onecolindexfalse, 124
\onecolindextrue, 124
onecolumn (option), 46
\onelineskip (length), 228, 234, 245
oneside (option), 46, 48, 83
\openany, 84
openany (option), 46, 84
openbib (option), 47
\openinputfile, 212
\openleft, 84
openleft (option), xix, 46, 84
\openoutputfile, 212
\openright, 84
openright (option), 46, 84
option, xiv, Xvii
10pt, 46, 47
11pt, 46
12pt, 46,48
14pt, 46,186
17pt, xxiii, 46, 186
9pt, 46
a3paper, 45
a4paper, 45
a5paper, 45
a6paper, 45
article, xvii, 47,79
b3paper, 45
b4paper, 45
b5paper, 45
b6paper, 45
draft, 46, 215, 216
ebook, 45, 48
executivepaper, 45
final, 46,215
fleqn, 47
landscape, 45
legalpaper, 45
leqno, 47
letterpaper, 45,47
ms, 46
oldfontcommands, 47
onecolumn, 46
oneside, 46, 48, 83
openany, 46, 84
openbib, 47
openleft, xix, 46,84
openright, 46.84
sectionbib, 123
showtrims, 46,216
subfigure, xvii, Xxi
titlepage, 69, 73
twocolumn, 46, 47, 73,75
twoside, 46, 47, 83, 180
\ordinal, 224
\OrdinalToName, 225
\ordinaltoName, 225
\ordinaltoname, 225
\ordscript, 224
orphan, 29
postbibhook, 122
package, xiii xiv, 75, 239,240
abstract, xvii, 73
afterpage, 119,136
alltt, 196,243
array, 155
booktabs, 155, 163
bringhurst, 240
ccaption, 129
chapterbib, xxv, 123
chngcntr, 218
chngpage, 98,221
color, 210
dcolumn, 155
delarray, 155
enumerate, 100
epigraph, 189,194
fancyhdr, 183
fixltx2e, 149, 188, 243
flafter, 150
footmisc, 175,176
framed, 209, 210
geometry, 49
graphicx, 87, 243
hanging, 96
hyperref, 106, 113, 125, 139, 229
index, 124, 197
jurabib, 123, 124
layouts, 111, 243, 244
ledmac, 176
lettrine, 246
longtable, 169
makeidx, 124
mathpazo, 55
memhfixc, 113
midpage, 136
moreverb, 207, 210
multicol, 149
multind, 197
nameref, 229
natbib, xxi, xxv, \(123,124,126\)
nextpage, 222
patchcmd, 220
sectsty, 77
shortvrb, 207
showidx, 124
sidecap, 130
subfigure, xvii, xxi, 138, 147, 148
tabularx, 155
titleref, 229, 231
titlesec, 77
titling, xiii, xvii 67
tocbibind, 105
tocloft, 105
tocvsec2, 82, 105
url, 243
verbatim, 207, 245
verse, xvii xix
xtab, 169
page, xxvii
of floats, 188
reference, 229
style, see pagestyle
page color, 26, 47
page (counter), 92
\pagename, 232
\pagenumbering, 92
\pagenumbering*, 92
\pageref, 119, 229, 230
\pagerefname, 229, 232
pagestyle, xiv, 45
chapter, 79, 83, 111, 184
cleared, 184
companion, 183, 184, 187, 189, 244
empty, 69, 111, 184,185
epigraph, 194
floatcomp, 189
headings, 45, 184
index, 188
myheadings, 184
part, 82, 184
plain, 68, 69, 184, 188, 192
Ruled, \(184,195,215\)
ruled, 49, 184
section, 84
title, 68,184
titlingpage, 69, 184
\pagestyle, \(84,110,117,183,184,186\)
\pagewidth, 57
pagination, xxvii, 3, 92
paper, xxvii, 7, 8, 10, 41, 42, 45, 46, 49, 50, 66, 119
end, 7,121
size, 10, 45, 49, 50, 53
A3, 45
A4, \(45,49,64,99\)
A5, 45
A6, 45
B3, 45
B4, 45
B5, 45
B6, 45
executive, 45
legal, 45
letterpaper, 10, 21, 45, 49, 64, 99, 235
\paperheight, 50
\paperheight (length), 53, 60, 63
\paperwidth, 50
\paperwidth (length), 53, 60, 63, 99,234
paragraph, 23, 26, 29, 29-31, 47, 95-96, 97,
99, 115, 195, 233, 237
block, \(90,96,130,140,237\)
hanging, \(90,96,99,237\)
indentation, \(30,75,79,95,98,130,190\)
\paragraph, 78, 82
\paragraphfootnotes, 177
\paragraphfootstyle, 177
\paraheadstyle, 91
\parbox, 168
\parfillskip, 115
\parindent (length), 55, 95, 97, 157, 245
\parnopar, 181
\(\backslash\) parsep (length), 124
\parshape, 99, 197
\parskip (length), 95, 96, 112, 143
part, 6, 78, 107, 108, 194 heading, see heading number, 6, 78, 82
\part, 47, 78, 82, 113,184
part (pagestyle), 82|| 184
\partname, 83, 231
\partnamefont, 83, 91
\partnamenum, 83
\partnumberline, 113
\partnumfont, 83, 91
\(\backslash\) partopsep (length), 103
\partrefname, 229, 232
\parttitlefont, 83, 91
patchcmd (package), 220
patverse (environment), 199, 200, 226
patverse* (environment), 199, 200
pc, xxviii
\pdfoutput, 228
specialrule, 164
\pfbreak, 80
\pfbreak*, 80
\(\backslash\) pfbreakdisplay, 80
\pfbreakskip (length), 80
\phantomsection, 106
Phidias, 12
pica, xxvii, xxviii
plain (pagestyle), 68, 69, 184, 188, 192
\plainbreak, 79,80
\plainbreak*,79
\plainfancybreak, 79,80
\plainfancybreak*, 79
\plainfootnotes, 177
\plainfootstyle, 177
poemline (counter), 200
\poemtitle, 200, 201, 229
\poemtitle*, 200, 201
\poemtitlefont, 200
\poemtitlemark, 201
\poemtoc, 201
point, xxvii Xxviii
\postauthor, 68
\postbibhook, 122
\postcaption, 131,138
\postchapterprecis, 120, 121
\postdate, 68
\posttitle, 68
preamble, 47, 48, 64, 73, 105, 109, 111, 114, 131, 178, 187, 228, 239, 240, 244, 246
\preauthor, 68
\prebibhook, 122, 194
\precaption, 131, 138
\prechapterprecis, 120, 121
\precistocfont, 121
\precistoctext, 121
\predate, 68
\Pref, 229
\pref, 229
preface, 4
\preindexhook, 125, 194
preliminaries, 3
\pretitle, 68
\printchaptername, 85, 86, 91
\printchapternonum, 86, 87,
\printchapternum, 85
\printchaptertitle, 85, 110, 235
\printindex, 124
\printpartname, 83
\printpartnum, 83
\printparttitle, 83
\printZtitle, 110
proportion, 10, \(12,14,16,19,21,23,56\)
\protect, 92, 108, 109, 212
\providecommand, 219
\providecounter, 219
\provideenvironment, 219
\providefixedcaption, 135, 136
\providelength, 219
\provideloglike, 219
\provideloglike*, 219
\pstyle, 244
pt, xxviii
\published, 68, 69
\qitem, 190
quad, xxviii
quarto, 7
quotation, 36, 95, 97, 189, 192
quotation (environment), 98,101
quotation marks, 35-36, 37
quote (environment), 98, 101, 121
rabbit, 13
\raggedbottom, 47, 48, 79, 176, 222
\raggedbottomsectionfalse, 79
\raggedbottomsectiontrue, 79
raggedleft, 97
\raggedleft, 97, 130, 140, 167
raggedright, 97
\raggedright, 97, 130, 140, 167, 180
\raggedyright, 97
\ragrparindent (length), 97
\readaline, 212
\readboxedverbatim, 213
\readstream, 212
\readverbatim, 213
recto, xxvii
\ref, 139, 229, 230
registered trademark, 232
\renewcommand, 87, 107, 113, 114, 135,144 ,
\[
\text { 147, 186, 219, } 220,222
\]
\renewcommand*, 220
\renewfixedcaption, 135,136
report (class), xiii 68, 73, 194
\reportnoidxfilefalse, 126
\reportnoidxfiletrue, 126
\(\backslash\) RequirePackage, 55
\resetbvlinenumber, 211
\resizebox, 87
\restorepagenumber, 92
\restoretrivseps, 103
\reversesideparfalse, 181
\reversesidepartrue, 181
\right, 161 162
\rightmark, 184, 187
\rm, xiii
Roman, 92
roman, 92
Ruled (pagestyle), 184, 195, 215
ruled (pagestyle), 49 184
\savepagenumber, 92
\savetrivseps, 103
\saythanks, 74
\sc, xiii
\secheadstyle, 91
secnumdepth (counter), 78,82
\section, \(78,79,81,82,85,88,89,180,200\). 230,237
section (chapterstyle), 84, 86, 105, 243
section (pagestyle), 84
\section*, 78
sectionbib (option), 123
\sectionmark, 187, 201
\sectionrefname, 229, 232
sectsty (package), 77
\see, 125,126
\seealso, 125,126
\seename, 125,126
\setaftersecskip, 237
\setafterSskip, 89
\setarrayelement, 227
\setbeforesecskip), 237
\setbeforeSskip, 88
\setbiblabel, 123
\setcolsepandrule, 58,59
\setcounter, 92, 219
\sethangfrom, 90, 237
\setheaderspaces, 59, 62
\setheadfoot, 59, 62
\setlength, \(50,60,75,83,85,101,112,143\),
186, 190,192, 198, 200
\setlrmargins, 56, 58, 60
\setlrmarginsandblock, 57, 60
\setlxvchars, 55
\setmarginnotes, 60, 62
\setpnumwidth, 111
\setrmarg, 111
\setsecheadstyle, 235
\setsecnumdepth, 82, 105
\setsecnumformat, 90
\setSheadstyle, 89
\setShook, 90
\setsidebarheight, 180
\setSindent, 89
\setstocksize, 50, 53, 60
\setsubsecheadstyle, 237
\settocdepth, 105, 201, 239
\settrimmedsize, 53, 55, 60
\settrims, 53, 60
\settypeblocksize, 55, 60, 221
\setulmargins, 57,59, 62
\setulmarginsandblock, 58, 62
\setverbatimfont, 208
\setxlvchars, 55
sexto, 7
\sf, xiii
\sffamily, 145
shadecolor, 209, 210
shaded (environment), 209, 210
\Shook, 90
\shortsubcaption, 140
shortvrb (package), 207
\showcols, 160
showidx (package), 124
\showindexmarkfalse, 126
\showindexmarktrue, 126
showtrims (option), 46, 216
\sidebar, 179, 180
\sidebarfont, 179
\sidebarform, 179, 180
\sidebarhsep (length), 180
\sidebarvsep (length), 180
\sidebarwidth (length), 180
sidecap (package), 130
\sidepar, 180
\sideparswitchfalse, 181
\sideparswitchtrue, 181
\sideparvshift (length), 180
signature, xxvii, 7, 8, 7-8
\sl, xiii
\slashfrac, 226
\slashfracstyle, 226
\small, 96, 168, 191, 245
\space, 91
\specialindex, 125126
\specialrule, 164
\spinemargin (length), 56, 60, 63, 99
spread, 14-23, 50
\Sref, 229
\stanzaskip (length), 198
stock, xxvii, 45, 46, 49, 50, 53, 59, 60, 64,
234, 235
\stockheight, 50
\stockheight (length), 50, 60,63
\stockwidth, 50
\stockwidth (length), 50, 60, 63, 234
\strictpagecheckfalse, 98, 221, 222
\strictpagechecktrue, 98,221
\stringtoarray, 227
\strip@pt, 237
subappendices (environment), 81
\subbottom, 140, 141, 148
\subcaption, 139, 141, 142, 147
\subcaptionfont, 140
\subcaptionlabelfont, 140
\subcaptionref, 139
\subcaptionsize, 140
\subcaptionstyle, 140
subfigure (option), xvii| xxi
subfigure (package), xvii, xxi, 138, 147, 148
subfloat,
new, 147-148
\subparagraph, 78, 82, 89
\subparaheadstyle, 91
\subsecheadstyle, 91
\subsection, 78, 82,89
\subsubsecheadstyle, 91
\subsubsection, 78, 82, 89
\subtop, 140, 142, 147
superscript, 26, 232
\suppressfloats, 150
symbol, 6, 37, 232
\symbolthanksmark, 71
syntax (environment), 245
table, see also float, 4, 10, 23, 24, 39, 39, 107, 118, \(129,132,134,136,138\), 146, 148, 188, 233, 239
list of, see LoT
reference, 229
table (environment), 169
table of contents, see ToC
\tablename, 135, 231
\tableof contents, 79, 81, 105, 106, 108, 109, 112
\tableofcontents*, 80, 109
\tablerefname, 229, 232
\tabsoff, 208, 209
\tabson, 208, 209
tabular (environment), 155, 157, 160, 165, 167,169, 171, 245
tabular* (environment), \(155,165,167\)
tabularx (environment), 155,165168
tabularx (package), 155
\tabularxcolumn, 168
\tensunitsep, 225
\textfloatsep (length), 152,153
\textfraction, 152, 153
\textheight (length), 55, 60, 62, 63
\textregistered, 232
\textsubscript, 226
\textsuperscipt, 232
\textsuperscript, 226
\texttrademark, 232
\textwidth (length), 55, 57, 60, 62, 63, 99 . 186
thanks, 67, 71
styling, 71-73
\thanks, 67, 69, 71, 73, 74, 175, 177
\thanksfootextra, 72
\thanksfootmark, 72
\thanksfootpost, 72
\thanksfootpre, 72
\thanksheadextra, 71
\thanksmark, 71
\thanksmarksep (length), 72
\thanksmarkseries, 71
\thanksmarkstyle, 71
\thanksmarkwidth (length), 72
\thanksrule, 73
\theauthor, 70
thebibliography (environment), 122, 123
\thectr, 218
\thedate, 70
theindex (environment), 125
\thepage, 92, 217
\thepoemline, 200
\thesheetsequence, 217
\thetitle, 70
\theTitleReference, 231
\thinspace, 228
\thispagestyle, 183, 184
\threecolumnfootnotes, 177
\threecolumnfootstyle, 177
\tightlist, 101
\tightlists, 101
\tightsubcaptions, 140
tip in, 8, 92, 119
title, 67
styling, 67-70
\title, 67, 68, 70
title page, 3, 67, 69-70
title (pagestyle), 68, 184
titlepage (environment), 69
titlepage (option), 69, 73
\titleref, 230, 231
titleref (package), 229, 231
titlesec (package), 77
titling (package), xiii, xvii, 67
titlingpage (environment), 69, 73
titlingpage (pagestyle), 69,184
\tmarkbl, 216, 217
\tmarkbm, 216,217
\tmarkbr, 216,217
\tmarkml, 216, 217
\tmarkmr, 216,217
\tmarktl, 216,217
\tmarktm, 216,217
\tmarktr, 216,217
ToC, \(355,74,78,80,81, ~ 92, ~ 105, ~ 107,117, ~\) 119, 122, 125, 200, 201, 234, 235, 239
toc (file), 121
tocbibind (package), 105
tocdepth (counter), 105, 117, 146
tocloft (package), 105
tocvsec2 (package), 82,105
\topfraction, 152 154
\topmargin (length), 63
topnumber (counter), 152
\toprule, 164
\topsep (length), 103
\topskip, 237
totalnumber (counter), 152
\tracingtabularx, 167
trademark, 232
\tref, 229
\trimedge (length), 53, 60, 63, 64, 234
\trimFrame, 216
\trimLmarks, 216
\trimmark, 217
\trimmarks, 216, 217
\trimNone, 216
\trimtop (length), 53, 60, 63, 64
\trimXmarks, 216, 217
trivlist (environment), 103
\tt, xiii
\twocolumn, 74
twocolumn (option), 46, 47, 73, 75
\twocolumnfootnotes, 177
\twocolumnfootstyle, 177
twoside (option), 46, 47, 83, 180
\TX@verb, 168
typeblock, 9, 14, 16, 19, 21, 23, 24, 26, 30-
32, 42, 47, 49, 50, 554 \(60,64,66\),
\(\boxed{69}, 98,49,185,186,189,191,199\). 233, 235, 237, 238
\typeout, 55
\typeoutlayout, 62
\typeoutstandardlayout, 62
\ucminusname, 225
underline, 38
\undodrop, 193
\unitlength (length), 99, 192, 237
\uppermargin (length), 57, 62, 63
url (package), 243
\usethanksrule, 73
veelo (chapterstyle), 87, 215
\verb, 167, 168, 208
\verb*, 168, 208
verbatim (environment), 196, 208, 209, 245
verbatim (package), 207, 245
verbatim* (environment), 208
\verbatimbreakchar, 209
\verbatimindent (length), 209
\verbatiminput, 213
\verbfootnote, 179
versal, 30-31
\versal, 246
verse (environment), xvii, 195 199, 211
verse (package), xvii, xix
\verselinebreak, 198, 199
\versewidth (length), 198
verso, xxvii
\vgap (length), 198, 199
\vin, 198
\vindent (length), 198, 199
\vinphantom, 198, 199
\vleftskip (length), 200
\vrightskip (length), 200
widow, 29
\wrappingoff, 209
\wrappingon, 209
writeverbatim (environment), 212
\xlvchars (length), 54, 55
xtab (package), 169
\z@, 245
Zdepth (counter), 146
\zerotrivseps, 103
\Zheadstart, 110
\Zmark, 110

\section*{Colophon}

This manual was typeset using the LaTeX typesetting system created by Leslie Lamport and the memoir class. The body text is set \(10 / 12 \mathrm{pt}\) on a 33 pc measure with Computer Modern Roman designed by Donald Knuth. Other fonts include Sans, Smallcaps, Italic, Slanted and Typewriter, all from Knuth's Computer Modern family.```

[^0]: ${ }^{1}$ I have received valuable comments from Javier Bezos (jbezos@wanadoo.es), Sven Bovin (sven.bovin@ chem.kuleuven.ac.be), Scott Pakin (pakin@uiuc.edu), and Paul Stanley (pstanley@essexcourt-chambers. co.uk)

[^1]: ${ }^{2}$ Discovered by Ignasi Furió Caldentey (ignasi@ipc4.uib.es).
 ${ }^{3}$ With thanks to, among others, Kevin Lin (kevinlin@runtop.com.tw) and Adriano Pascoletti (pascolet@dimi.uniud.it).

[^2]: ${ }^{4}$ With thanks to, among others, Ignasi Furió Caldentey (ignasi@ipc4.uib.es), Daniel Richard G. (skunk@mit.edu) and Vladimir Ivanovic (vladimir@acm.org).

[^3]: ${ }^{5}$ With thanks to, among others, William Adams (WillAdams@aol.com) Ignasi Furió Caldentey (ignasi@ ipc4.uib.es), Steven Douglas Cochran (sdc+@cs.cmu.edu), Henrik Holm (henrik@tele.ntnu.no), and Rolf Niepraschk (niepraschk@ptb.de).

[^4]: ${ }^{6}$ At the request of Vittorio De Martino whose children use LaTeX for their school projects.

[^5]: ${ }^{7}$ PostScript is a registered trademark of Adobe Systems Incorporated.

[^6]: ${ }^{1}$ A second edition should be more valuable than a first edition as there are many fewer of them.

[^7]: ${ }^{1}$ Both e and π are well known mathematical numbers. $e(=2.718 \ldots)$ is the base of natural logarithms and $\pi(=3.141 \ldots)$ is the ratio of the circumference of a circle to its diameter.

[^8]: ${ }^{2}$ Book of the Abacus.
 ${ }^{3}$ The numbers at the start of the series depend on whether you consider the initial pair of rabbits to be adults or babies.

[^9]: ${ }^{4}$ Early books, especially those printed before 1500.

[^10]: ${ }^{5}$ This is actually somewhat contentious as some take the view that with enough practice, sans-serif is just as easy to read.

[^11]: ${ }^{6}$ But probably not. The two 'paragraphs' are Latin abecedarian sentences.

[^12]: "There's glory for you!"
 "I don't know what you mean by 'glory,'" Alice said.
 Humpty Dumpty smiled contemptuously. "Of course you don't - till I tell you. I meant 'there's a nice knock-down argument for you!'"
 "But 'glory' doesn't mean 'a nice knock-down argument,'" Alice objected.
 "When I use a word," Humpty Dumpty said, in a rather scornful tone, "it means just what I choose it to mean - neither more nor less."

[^13]: ${ }^{1}$ Except to some I know.
 ${ }^{2}$ I hope that this is a phrase.
 ${ }^{3}$ Is this mark in the correct place?
 ${ }^{4}$ Marks 2 and 3
 ${ }^{5}$ PostScript is a registered trademark of Adobe Systems Incorporated.

[^14]: ${ }^{1}$ Only the spine margin is noted in Figure 6.2 the foredge margin is at the opposite side of the typeblock.

[^15]: ${ }^{2}$ Only the upper margin is noted in Figure 6.2 the lower margin is the distance between the bottom of the typeblock and the bottom of the page.

[^16]: ${ }^{3}$ The head drop is not shown in Figure 6.2

[^17]: ${ }^{4}$ Email from niepraschk@ptb. de on 2002/02/05.

[^18]: \begin\{titlingpage\}

[^19]: ${ }^{1}$ The abstract environment is not available for the book class.

[^20]: ${ }^{1}$ This is a consequence of the internal timing of macro calls.

[^21]: ${ }^{1}$ On A4 paper the result would be different．

[^22]: ${ }^{1}$ For figures and tables it is the \caption command that populates the .lof and .lot files.

[^23]: ${ }^{2}$ There are 18 mu to 1 em .

[^24]:[^25]: ${ }^{3}$ These only work for arabic page numbers.

[^26]: ${ }^{4}$ For example, Robert Sedgewick, Algorithms, Addison-Wesley, 1983.

[^27]: ${ }^{1}$ See $\$ 11.3$ on page 147

[^29]: ${ }^{2}$ This little quirk is fixed by the fixltx2e package，at least for tables and figures．The package is part of a normal LaTeX distribution．

[^30]: \newcolumntype $\{\mathrm{C}\}\{>\{\$\} c<\{\$\}\}$
 \newcolumntype\{L\}\{>\{\$\}l<\{\$\}\}
 \newcolumntype\{R\}\{>\{\$\}r<\{\$\}\}

