
The alphalph package

“Converting numbers to letters”

1999/04/13, v1.1

Heiko Oberdiek1

Abstract

The package provides the new expandable commands \alphalph and
\AlphAlph. They are like \number, but the expansion consists of lowercase
and uppercase letters respectively.

Contents

1 Usage 2
1.1 User commands . 2

2 Installation 2
2.1 Package . 2
2.2 Documentation . 3

2.2.1 With LATEX . 3
2.2.2 With pdfLATEX . 3

3 Implementation 3
3.1 Begin of package . 3
3.2 Help macros . 3
3.3 User commands . 4
3.4 Conversion with standard TEX means 5

3.4.1 Convert the separated digits to the letter result 5
3.4.2 Addition by one . 6

3.5 Conversion with ε-TEX features . 8
3.6 End of package . 8

4 History 9
[1999/03/19 v0.1] . 9
[1999/04/12 v1.0] . 9
[1999/04/13 v1.1] . 9

5 Index 9
1Heiko Oberdiek’s email address: oberdiek@ruf.uni-freiburg.de

1

mailto:oberdiek@ruf.uni-freiburg.de

1 Usage

The package alphalph can used with both plainTEX and LATEX:

plainTEX: \input alphalph.sty

LATEX 2ε: \usepackage{alphalph}
There aren’t any options.

1.1 User commands

\alphalph: This works like \number, but the expansion consists of lowercase let-\alphalph

ters.

\AlphAlph: It converts a number into uppercase letters.\AlphAlph

Both commands have following properties:

• They are fully expandable. This means that they can safely

– be written to a file,

– used in moving arguments (LATEX: they are robust),

– used in a \csname-\endcsname pair.

• If the argument is zero or negative, the commands expand to nothing like
\romannumeral.

• As argument is allowed all that can be used after a \number:

– explicite constants,

– macros that expand to a number,

– count registers, LATEX counter can used via \value, e. g.:
\alphalph{\value{page}}

The following table shows, how the conversion is made:

number 1, 2, . . . , 26, 27, . . . , 52, 53, . . . , 78, 79, . . . , 702, 703, . . .
\alphalph a, b, . . . , z, aa, . . . , az, ba, . . . , bz, ca, . . . , zz, aaa, . . .

2 Installation

2.1 Package

Run alphalph.ins through TEX to get file alphalph.sty:

tex alphalph.ins

Move the file alphalph.sty into a directory that is searched by LATEX. As location
in a TDS tree I recommend:

texmf/tex/latex/oberdiek/alphalph.sty or
texmf/tex/latex/misc/alphalph.sty

Or for use with TeX:

texmf/tex/generic/misc/alphalph.sty

2

2.2 Documentation

For generating the documentation the ε-TEX-extension is recommended, because
it works faster with alphalph.

2.2.1 With LATEX

If you have package hyperref installed and want to use another driver than the
default, use the configuration file hyperref.cfg to set your driver choice:

\hypersetup{〈your driver 〉}

The following commands produce the documentation, don’t forget MakeIndex’s
option -r, if you use hyperref (eventually you need another cycle with MakeIndex
and LATEX):

latex alphalph.dtx
makeindex -rs gind alphalph
latex alphalph.dtx
makeindex -rs gind alphalph
latex alphalph.dtx

2.2.2 With pdfLATEX

Package hyperref for hyperlinks and package thumbpdf for thumbnails are sup-
ported. Generate the pdf file with the following commands (eventually you need
another cycle with MakeIndex and pdfLATEX):

pdflatex alphalph.dtx
makeindex -rs gind alphalph
pdflatex alphalph.dtx
makeindex -rs gind alphalph
pdflatex alphalph.dtx
thumbpdf alphalph
pdflatex alphalph.dtx
hothread alphalph.dtx

Within the current pdfTEX there are still problems and bugs with the thread
support. The perl script hothread(.pl) reads the informations of the .pdf and
the .log file and corrects the .pdf file by appending an update section.

3 Implementation

3.1 Begin of package

\@ReturnAfterElseFi

\@ReturnAfterFi
1 〈∗package〉
The package identification is done at the top of the .dtx file in order to use only
one identification string.

For unique command names this package uses aa@ as prefix for internal com-

mand names. Because we need @ as a letter we save the current catcode value.

2 \expandafter\edef\csname aa@atcode\endcsname{\the\catcode‘\@ }

3 \catcode‘\@=11
3.2 Help macros

The following commands moves the ‘then’ and ‘else’ part respectively behind the
\if-construct. This prevents a too deep \if-nesting and so a TEX capacity error

3

because of a limited input stack size. I use this trick in several packages, so I
don’t prefix these internal commands in order not to have the same macros with
different names. (It saves memory).

\aa@alph

\aa@Alph

\alphalph

\AlphAlph

\aa@callmake
4 \long\def\@ReturnAfterElseFi#1\else#2\fi{\fi#1}

5 \long\def\@ReturnAfterFi#1\fi{\fi#1}
The two commands \aa@alph and \aa@Alph convert a number into a letter (lower-
case and uppercase respectivly). The character @ is used as an error symbol, if the
number isn’t in the range of 1 until 26. Here we need no space after the number
#1, because the error symbol @ for the zero case stops scanning the number.
6 \def\aa@alph#1{%

7 \ifcase#1%

8 @%

9 \or a\or b\or c\or d\or e\or f\or g\or h\or i\or j\or k\or l\or m%

10 \or n\or o\or p\or q\or r\or s\or t\or u\or v\or w\or x\or y\or z%

11 \else

12 @%

13 \fi

14 }

15 \def\aa@Alph#1{%

16 \ifcase#1%

17 @%

18 \or A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or K\or L\or M%

19 \or N\or O\or P\or Q\or R\or S\or T\or U\or V\or W\or X\or Y\or Z%

20 \else

21 @%

22 \fi

23 }
3.3 User commands

The whole difference between \alphalph and \AlphAlph is that the output con-
sists of lowercase or uppercase letters.

24 \def\alphalph{\aa@callmake\aa@alph}

25 \def\AlphAlph{\aa@callmake\aa@Alph}
\aa@callmake converts the number in the second argument #2 into explicite dec-
imal digits via the TEX primitive \number. (The closing curly brace stops reading
the number at the latest.)

26 \def\aa@callmake#1#2{%

27 \expandafter\aa@make\expandafter{\number#2}#1%

28 }
ε-TEXprovides the new primitive \numexpr. With this command the imple-
mentation is very simple (see 3.5). Therefore the package provides two methods: a
fast and simple one that uses the ε-TEX extension and a method that is restricted
to the standard TEX means.

Now we distinguish between TEX and ε-TEXby checking whether \numexpr is
defined or isn’t. Because the TEX primitive \csname defines an undefined com-
mand to be \relax, \csname is executed in a group.

29 \begingroup\expandafter\expandafter\expandafter\endgroup

30 \expandafter\ifx\csname numexpr\endcsname\relax
4

3.4 Conversion with standard TEX means

\aa@make \aa@make catches the cases, if the number is zero or negative. Then it expands to
nothing like \romannumeral.

\aa@process
31 \def\aa@make#1#2{%

32 \ifnum#1<1

33 \else

34 \@ReturnAfterFi{%

35 \aa@process1;#1;1..#2%

36 }%

37 \fi

38 }
\aa@process contains the algorithm for the conversion. TEXdoesn’t provide a
simple method to divide or multiply numbers in a fully expandable way. An
expandable addition by one is complicated enough. Therefore \aa@process uses
only expandible versions of additions by one. The algorithm starts with one and
increments it until the size of the wanted number is reached. The intermediate
number that is incremented is present in two kinds:

• the normal decimal form for the \ifnum-comparison,

• a digit format: the end of each digit is marked by an dot, and the digits are
in reserved order. An empty digit ends this format. The meaning of a digit
is here the decimal representation of a letter, the range is from 1 until 26.

Example: The aim number is 100, the intermediate number 50, so following would
be on the argument stack:

50;100;24.1..\aa@alph

\aa@process increments the first argument #1 (50), and calls \aa@alphinc to
increment the digit form (24.1..). The middle part with the aim number
;#2; (;100;) will not be changed. Neither \aa@process nor \aa@alphinc need
the conversion command \aa@alph nor \aa@Alph. This command is read by
\aa@getresult, if the digit form is ready.

The expansion motor is \number. It reads and expands token to get decimal
numbers until a token is reached that isn’t a decimal digit. So the expansion
doesn’t stop, if \aa@inc is ready, because \aa@inc produces only decimal digits.
\aa@alphinc is expanded to look for further digits. Now \aa@alphinc makes
its job and returns with its argument ;#2;. At last the first character ; finishes
\number.

39 \def\aa@process#1;#2;{%

40 \ifnum#1=#2

41 \expandafter\aa@getresult

42 \else

43 \@ReturnAfterFi{%

44 \expandafter\aa@process\number\aa@inc{#1}\aa@alphinc{;#2;}%

45 }%

46 \fi

47 }
3.4.1 Convert the separated digits to the letter result

The single decimal digits of the final letter number are limited by a dot and come
in reverse order. The end is marked by an empty digit. The next token is the
command to convert a digit (\aa@alph or \aa@Alph), e.g.:

5

11.3.1..\alph ⇒ ack

\aa@getresult \aa@getresult reads the digits #1 and the converting command #2. Then it calls
\aa@@getresult with its arguments.

\aa@@getresult

\aa@inc

\aa@nextdigit

\aa@reverse
48 \def\aa@getresult#1..#2{%

49 \aa@@getresult!#2#1..%

50 }
In its first argument #1 \aa@@getresult collects the converted letters in the cor-
rect order. Character ! is used as a parameter separator. The next token #2
is the converting command (\aa@alph or \aa@Alph). The next digit #3 is read,
converted, and \aa@@getresult is called again. If the digit #3 is empty, the end
of the digit form is reached and the process stops and the ready letter number is
output.

51 \def\aa@@getresult#1!#2#3.{%

52 \ifx\\#3\\%

53 \@ReturnAfterElseFi{#1}% ready

54 \else

55 \@ReturnAfterFi{%

56 \expandafter\expandafter\expandafter\expandafter

57 \expandafter\expandafter\expandafter

58 \aa@@getresult

59 \expandafter\expandafter\expandafter\expandafter

60 #2{#3}#1!#2%

61 }%

62 \fi

63 }
3.4.2 Addition by one

Expandable addition of a decimal integer.

\aa@inc increments its argument #1 by one. The case, that the whole number
is less than nine, is specially treated because of speed. (The space after 9 is
neccessary.)

64 % \aa@inc adds one to its argument #1.

65 \def\aa@inc#1{%

66 \ifnum#1<9

67 \aa@nextdigit{#1}%

68 \else

69 \aa@reverse#1!!%

70 \fi

71 }
\aa@nextdigit increments the digit #1. The result is a digit again. \aa@addone
works off the case “9+1”.

72 \def\aa@nextdigit#1{\ifcase#1 1\or2\or3\or4\or5\or6\or7\or8\or9\fi}
Because the addition starts with the lowest significant digit of the number. But
with the means of TEX’s macro expansion is the first digit of a number available.
So \aa@reverse reverses the order of the digits and calls \aa@addone, if it is
ready.

73 \def\aa@reverse#1#2!#3!{%

74 \ifx\\#2\\%

75 \aa@addone#1#3!!%
76 \else

6

\aa@addone

\aa@lastreverse

\aa@alphinc
77 \@ReturnAfterFi{%

78 \aa@reverse#2!#1#3!%

79 }%

80 \fi

81 }
The addition is performed by the macro \aa@addone. The digits are in reversed
order. The parameter text #1#2 separates the next digit #1 that have to be
incremented. Already incremented digits are stored in #3 in reversed order to
take some work of \aa@lastreverse.

82 \def\aa@addone#1#2!#3!{%

83 \ifnum#1<9

84 \expandafter\aa@lastreverse\number\aa@nextdigit#1 #2!#3!%

85 \else

86 \@ReturnAfterFi{%

87 \ifx\\#2\\%

88 10#3%

89 \else

90 \@ReturnAfterFi{%

91 \aa@addone#2!0#3!%

92 }%

93 \fi

94 }%

95 \fi

96 }
With \aa@reverse the order of the digits is changed to perform the addition
in \aa@addone. Now we have to return to the original order that is done by
\aa@lastreverse.

97 \def\aa@lastreverse#1#2!#3!{%

98 \ifx\\#2\\%

99 #1#3%

100 \else

101 \@ReturnAfterFi{%

102 \aa@lastreverse#2!#1#3!%

103 }%

104 \fi

105 }
Increment of the decimal digit result form.

\aa@alphinc adds one to the intermediate number in the decimal digit result
form (see 3.4.1). Parameter #1 consists of the tokens that come before the addition
result (see ;#2; of \aa@process). Then it is also used to store already incremented
digits. #2 contains the next digit in the range of 1 until 26. An empty #2 marks

the end of the number.
106 \def\aa@alphinc#1#2.{%

107 \ifx\\#2\\%

108 \@ReturnAfterElseFi{%

109 #11..% ready

110 }%

111 \else

112 \@ReturnAfterFi{%

113 \ifnum#2<26

114 \@ReturnAfterElseFi{%

115 \expandafter\aa@alphinclast\expandafter
7

\aa@alphinclast

\aa@make

\aa@eprocess
116 {\number\aa@inc{#2}}{#1}%

117 }%

118 \else

119 \@ReturnAfterFi{%

120 \aa@alphinc{#11.}%

121 }%

122 \fi

123 }%

124 \fi

125 }
\aa@alphinclast is a help macro. Because #2 consists of several tokens (e.g.
;100;), we cannot jump over it via \expandafter in \aa@alphinc.

126 \def\aa@alphinclast#1#2{#2#1.}
3.5 Conversion with ε-TEX features
127 \else
\aa@make catches the cases, if the number is zero or negative. Then it expands to
nothing like \romannumeral.

128 \def\aa@make#1#2{%

129 \ifnum#1<1

130 \else

131 \@ReturnAfterFi{%

132 \aa@eprocess#1;#2%

133 }%

134 \fi

135 }
The first argument #1 contains the number that have to be converted yet, the
next argument #2 the command for making the conversion of a digit (\aa@alph or
\aa@Alph). The number is divided by 26 to get the rest. Command #2 converts the
rest to a letter that is put after the arguments of the next call of \aa@eprocess.

The only feature of ε-TEX we use the new primitive \numexpr. It provides
expandible mathematical calculations.

136 \def\aa@eprocess#1;#2{%

137 \ifnum#1<27

138 \@ReturnAfterElseFi{%

139 #2{#1}%

140 }%

141 \else

142 \@ReturnAfterFi{%

143 \expandafter\aa@eprocess\number\numexpr(#1-14)/26%

144 \expandafter\expandafter\expandafter;%

145 \expandafter\expandafter\expandafter#2%

146 #2{\numexpr#1-((#1-14)/26)*26}%

147 }%

148 \fi

149 }
3.6 End of package

Now we can terminate the differentiation between T X and ε-T X.
E E
150 \fi
8

At the end the catcode of the character @ is restored.
151 \catcode‘\@=\aa@atcode
152 〈/package〉
4 History
[1999/03/19 v0.1]

• The first version was built as a response to a question2of Will Douglas3 and
the request4of Donald Arsenau5, published in the newsgroup comp.text.tex:
“Re: alph counters > 26”6

• Copyright: LPPL (CTAN:macros/latex/base/lppl.txt7)
[1999/04/12 v1.0]

• Documentation added in dtx format.

• ε-TEX support added.
[1999/04/13 v1.1]

• Minor documentation change.

• First CTAN release.
5 Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed, the ones underlined to the code line of the definition, the rest to the code
lines where the entry is used.
Symbols
\@ReturnAfterElseFi

4, 53, 108, 114, 138
\@ReturnAfterFi . . .

. . 4, 34, 43, 55,
77, 86, 90, 101,
112, 119, 131, 142

A
\aa@@getresult . . 49, 51
\aa@addone 75, 82
\aa@Alph 6, 25
\aa@alph 6, 24
\aa@alphinc 44, 106

\aa@alphinclast 115, 126

\aa@atcode 151

\aa@callmake . 24, 25, 26

\aa@eprocess . . 132, 136

\aa@getresult . . . 41, 48

\aa@inc 44, 64, 116

\aa@lastreverse . 84, 97

\aa@make . . . 27, 31, 128

\aa@nextdigit 67, 72, 84

\aa@process 35, 39

\aa@reverse 69, 73

\AlphAlph 2, 24

\alphalph 2, 24

C

\catcode 2, 3, 151

I

\ifcase 7, 16, 72

\ifnum 32, 40,
66, 83, 113, 129, 137

\ifx 30, 52, 74, 87, 98, 107

N

\number
27, 44, 84, 116, 143

\numexpr 143, 146

2Url: http://www.dejanews.com/[ST_rn=ps]/getdoc.xp?AN=455791936
3Will Douglas’s email address: william.douglas@wolfson.ox.ac.uk
4Url: http://www.dejanews.com/[ST_rn=ps]/getdoc.xp?AN=456358639
5Donald Arsenau’s email address: asnd@reg.triumf.ca
6Url: http://www.dejanews.com/[ST_rn=ps]/getdoc.xp?AN=456485421
7
Url: ftp://ftp.dante.de/tex-archive/macros/latex/base/lppl.txt

9

news:comp.text.tex
ftp://ftp.dante.de/tex-archive/macros/latex/base/lppl.txt
http://www.dejanews.com/[ST_rn=ps]/getdoc.xp?AN=455791936
mailto:william.douglas@wolfson.ox.ac.uk
http://www.dejanews.com/[ST_rn=ps]/getdoc.xp?AN=456358639
mailto:asnd@reg.triumf.ca
http://www.dejanews.com/[ST_rn=ps]/getdoc.xp?AN=456485421
ftp://ftp.dante.de/tex-archive/macros/latex/base/lppl.txt

	Contents
	1 Usage
	1.1 User commands

	2 Installation
	2.1 Package
	2.2 Documentation
	LaTeX
	pdfLaTeX

	3 Implementation
	3.1 Begin
	3.2 Help macros
	3.3 User commands
	3.4 TeX
	Digits to letter result
	Addition by one

	3.5 e-TeX
	3.6 End

	4 History
	[1999/03/19 v0.1]
	[1999/04/12 v1.0]
	[1999/04/13 v1.1]

	5 Index
	Article threads
	Code
	History
	Index

